
SNIA NVM Programming Model
Workgroup Update

#OFADevWorkshop

 PM Brings Storage

 To Memory
Slots

PM

Fast Like
Memory

Durable
Like Storage

Persistent Memory (PM) Vision

2

Latency Thresholds
Cause Disruption

March 15 – 18, 2015 #OFADevWorkshop 3

La
te

nc
y

(L
og

)

200 nS

2 uS

HDD SATA
SSD

NVMe
Flash

Persistent
Memory

Context
Switch

NUMA

Min, Max Latencies For
Example Technologies

Eliminate File System Latency
with Memory Mapped Files

March 15 – 18, 2015 #OFADevWorkshop 4

Application

File System

Disk Driver

Disk

Application

Persistent
Memory Load/Store

Memory Mapped Files

Traditional New

U
se

r
K

er
ne

l
H

W

U
se

r
H

W

Version 1 of SNIA NVM
Programming Model
• Approved by SNIA in December 2013

– Downloadable by anyone
– Version 1.1 approved March 2015

• Expose new block and file features to applications
– Atomicity capability and granularity
– Thin provisioning management

• Use of memory mapped files for persistent memory
– Existing abstraction that can act as a bridge
– Limits the scope of application re-invention
– Open source implementations available for incremental

innovation (e.g. Linux DAX extensions)

• Programming Model, not API
– Described in terms of attributes, actions and use cases
– Implementations map actions and attributes to API’s

March 15 – 18, 2015 #OFADevWorkshop 5

The 4 Modes

March 15 – 18, 2015 #OFADevWorkshop 6

Traditional Persistent Memory
User View NVM.FILE NVM.PM.FILE
Kernel Protected NVM.BLOCK NVM.PM.VOLUME
Media Type Disk Drive Persistent Memory
NVDIMM Disk-Like Memory-Like

Block Mode Innovation

• Atomics
• Access hints
• NVM-oriented

operations

Emerging NVM
Technologies

• Performance
• Performance
• Perf… okay, cost

NVM.PM.VOLUME and
NVM.PM.FILE

March 15 – 18, 2015 #OFADevWorkshop 7

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware kernel module

PM device

NVM.PM.VOLUME mode

NVM.PM.FILE mode

Use with memory-like NVM
NVM.PM.VOLUME Mode
 Software abstraction to OS

components for Persistent Memory
(PM) hardware

 List of physical address ranges for
each PM volume

 Thin provisioning management

NVM.PM.FILE Mode
 Describes the behavior for

applications accessing persistent
memory Discovery and use of atomic
write features

 Mapping PM files (or subsets of files)
to virtual memory addresses

 Syncing portions of PM files to the
persistence domain

Most Significant Change in
NVMP Version 1.1

Data Consistency Requirement:
Atomicity of aligned operations

on fundamental data types
• Aligned Operations:

– multiple of processor word width
– Instruction Set Architectures already define them

• Fundamental Data Types
– Native to languages or libraries
– Generated by high-level language constructs

• Used by apps in addition to sync for local pfail consistency
• How to extend to remote memory?
March 15 – 18, 2015 #OFADevWorkshop 8

Work in progress –
Failure Atomicity
• Current processor + memory systems

– Provide inter-process consistency
– Not atomicity with respect to failure

• System reset/restart/crash
• Power Failure
• Memory Failure

• Leverage existing research on persistent
memory transactions to get failure atomicity

• Describe behaviors required to achieve atomicity
of groups of persistent data structures

March 15 – 18, 2015 #OFADevWorkshop 9

Related work–
Persistent Data Structure Libraries

• Optimal use of PM requires a different style of
data structure construction
– Commits are stores to fundamental data types
– No marshalling for storage or network IO

• Data structures implemented in libraries
• Examples: Linux Pmem

– Incudes base class, log, array of blocks, transaction
– http://pmem.io/nvml/libpmem/
– https://github.com/pmem/linux-examples

March 15 – 18, 2015 #OFADevWorkshop 10

http://pmem.io/nvml/libpmem/
https://github.com/pmem/linux-examples

Work in progress –
Remote access for High Availability

• Use case: High Availability Memory Mapped Files
– Built on V1.1 NVM.PM.FILE OptimizedFlush action
– RDMA copy from local to remote PM

• Requirements:
– Assurance of remote durability
– Efficient byte range transfers
– Efficient large transfers
– Atomicity of fundamental data types
– Resource recovery and hardware fencing after failure

March 15 – 18, 2015 #OFADevWorkshop 11

#OFADevWorkshop

Thank You

RDMA and NVM
Programming Model
#OFADevWorkshop

NVM.PM.File.Map, Sync,
OptimizedFlush
• Map

– Associates memory addresses with open file
– Caller may request specific address

• Sync
– Flush CPU cache for indicated range
– Additional Sync types

• Optimized Flush – multiple ranges from user space
• Optimized Flush and Verify – Optimized flush with read back

from media

March 15 – 18, 2015 #OFADevWorkshop 14

Low Latency Remote
OptimizedFlush

• Remote Access for HA examines OptimizedFlush
implementation
– Goal is to minimize latency
– Requires at least 2 round trips with today’s

implementations
– Main issue is assurance of durability at remote site.

• Use today’s RDMA to explore this use case
– Agnostic to specific implementation (IB, ROCE, iWARP)
– Optimal implementation may not actually be RDMA

March 15 – 18, 2015 #OFADevWorkshop 15

Recovery AND Consistency

• Application level goal is recovery from failure
– Requires robust local and remote error handling
– High Availability (as opposed to High Durability) requires

application involvement.
• Consistency is an application specific constraint

– Uncertainty of data state after failure
– Crash consistency
– Higher order consistency points
– Atomicity of Aligned Fundamental Data Types

March 15 – 18, 2015 #OFADevWorkshop 16

Application Recovery Scenarios

March 15 – 18, 2015 #OFADevWorkshop 17

Sc
en

ar
io

Re
du

nd
an

cy
 fr

es
hn

es
s

Ex
ce

pt
io

n

Ap
pl

ic
at

io
n

ba
ck

tr
ac

k
w

ith
ou

t r
es

ta
rt

Se
rv

er
 R

es
ta

rt

Se
rv

er
 F

ai
lu

re

In Line Recovery Better than
sync

Precise and
contained

NA No No

Backtracking Recovery Consistency
point

Imprecise and
contained

Yes No No

Local application restart Consistency
point

Not contained No NA No
NA NA Yes No

Application Failover Consistency
point

NA NA NA Yes

Remote Access Hardware

March 15 – 18, 2015 #OFADevWorkshop 18

DIMMDIMM

CPU

DIMMS &
NVDIMMSIO

DIMMDIMM

CPU

DIMMS &
NVDIMMS

IO

Network Adapter
(RNIC)

Network Adapter
(RNIC)

Network
Switch(s)

Server

Server

Software Context Example

March 15 – 18, 2015 #OFADevWorkshop 19

• Standard file API
• NVM Programming

Model optimized flush
• RAID software for HA

– user space libraries
– local file system
– remote file system

• via network file system
client and NIC

HW/SW View for Data Flow
Sequence Diagram

March 15 – 18, 2015 #OFADevWorkshop 20

R
N

IC

R
N

IC

Various Virtual Address Spaces

March 15 – 18, 2015 #OFADevWorkshop 21

Mapping controlled
by client peer OS

Mapping controlled by RNIC
Mapping controlled
by server peer OS

Only the “Device” address
spaces must match

• Sufficiently to allow

restoration and failover

• Orchestrated by peer
file/operating systems

March 15 – 18, 2015 #OFADevWorkshop 22

RDMA Flow for HA
Optimized Flush

Flush to guarantee
durability and HA

Optimized Flush
triggers dis-contiguous

RDMA writes

Map triggers RDMA
Registration

Sequence Diagram actors:
PM aware application
2 hosts mirroring PM
RDMA Adapter (Rnic)

March 15 – 18, 2015 #OFADevWorkshop 23

RDMA Flow for HA
Optimized Flush

Flush to guarantee
durability and HA

Optimized Flush
triggers dis-contiguous

RDMA writes

Map triggers RDMA
Registration

Sequence Diagram actors:
PM aware application
2 hosts mirroring PM
RDMA Adapter (Rnic)

March 15 – 18, 2015 #OFADevWorkshop 24

RDMA Flow for HA
Optimized Flush

Flush to guarantee
durability and HA

Optimized Flush
triggers dis-contiguous

RDMA writes

Map triggers RDMA
Registration

Sequence Diagram actors:
PM aware application
2 hosts mirroring PM
RDMA Adapter (Rnic)

March 15 – 18, 2015 #OFADevWorkshop 25

RDMA Flow for HA
Optimized Flush

Flush to guarantee
durability and HA

Optimized Flush
triggers dis-contiguous

RDMA writes

Map triggers RDMA
Registration

Sequence Diagram actors:
PM aware application
2 hosts mirroring PM
RDMA Adapter (Rnic)

March 15 – 18, 2015 #OFADevWorkshop 26

RDMA Flow for HA
Optimized Flush

Flush to guarantee
durability and HA

Optimized Flush
triggers dis-contiguous

RDMA writes

Map triggers RDMA
Registration

Sequence Diagram actors:
PM aware application
2 hosts mirroring PM
RDMA Adapter (Rnic)

March 15 – 18, 2015 #OFADevWorkshop 27

RDMA Flow for HA
MORE Optimized Flush

Piggybacked with
remote flush

Optimized Flush
triggers multi-range

RDMA writes

Map triggers RDMA
Registration

Sequence Diagram actors:
PM aware application
2 hosts mirroring PM
RDMA Adapter (Rnic)

Work in progress –
Remote access for High Availability

• Use case: High Availability Memory Mapped Files
– Built on V1.1 NVM.PM.FILE OptimizedFlush action
– RDMA copy from local to remote PM

• Requirements:
– Assurance of remote durability
– Efficient byte range transfers
– Efficient large transfers
– Atomicity of fundamental data types
– Resource recovery and hardware fencing after failure

• NVM PM Remote Access for High Availability
March 15 – 18, 2015 #OFADevWorkshop 28

http://www.snia.org/sites/default/files/NVM%20PM%20Remote%20Access%20for%20High%20Availability%20V04R1.pdf

#OFADevWorkshop

Thank You

	SNIA NVM Programming Model Workgroup Update
	Persistent Memory (PM) Vision
	Latency Thresholds�Cause Disruption
	Eliminate File System Latency with Memory Mapped Files
	Version 1 of SNIA NVM Programming Model
	The 4 Modes
	NVM.PM.VOLUME and�NVM.PM.FILE
	Most Significant Change in NVMP Version 1.1
	Work in progress – �Failure Atomicity
	Related work– �Persistent Data Structure Libraries
	Work in progress – �Remote access for High Availability
	Thank You
	RDMA and NVM Programming Model
	NVM.PM.File.Map, Sync,�OptimizedFlush
	Low Latency Remote OptimizedFlush
	Recovery AND Consistency
	Application Recovery Scenarios
	Remote Access Hardware
	Software Context Example
	HW/SW View for Data Flow Sequence Diagram
	Various Virtual Address Spaces
	RDMA Flow for HA �Optimized Flush
	RDMA Flow for HA �Optimized Flush
	RDMA Flow for HA �Optimized Flush
	RDMA Flow for HA �Optimized Flush
	RDMA Flow for HA �Optimized Flush
	RDMA Flow for HA �MORE Optimized Flush
	Work in progress – �Remote access for High Availability
	Thank You

