

Fabrics – Why We Love Them and Why We Hate Them

#OFADevWorkshop

Dave Dunning Intel Corporation Why we love Interconnect Fabrics, or, "I can design transportation systems"

- They move bits around...
 - Communication between resources
 - Start at some "address" and go to another "address"
 - On-die, fit everything into a nice gridded pattern, at an intersection, go towards your destination
 - Between die, travel along wires, when you get to a fork in the road, pick the path that goes to your destination
- How hard can it be to design?
 - Just copy our transportation systems, but make it better

Copyright © 2015 Intel Corporation

Fabrics – Often the most "scrutinized" shared resource in a system

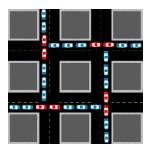
- The technology seems simple, can be visualized
 - Switches, arbiters, buffers, wires, tables, counters...
 - Distributed, usually organized, repetitive
 - "Features" can be "invented" by anyone with any background
 - Make them work the way I want to use them

The most common sentence uttered by a Fabric Designer: "Stop helping me!"

Copyright © 2015 Intel Corporation

March 15 – 18, 2015

#OFADevWorkshop

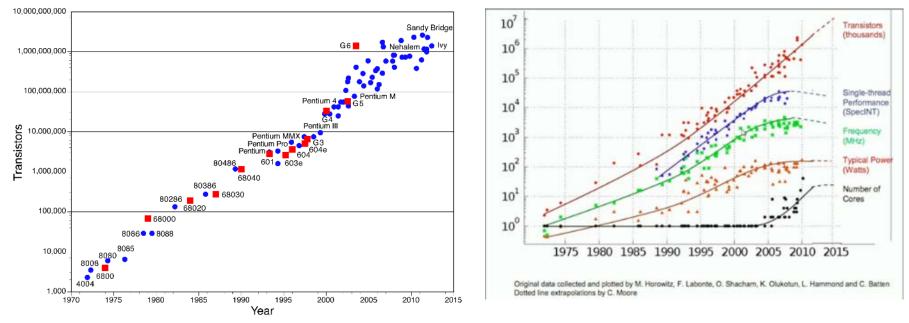

3

Why we hate interconnect Fabrics, or Pretending packets are cars is just wrong

- Contexts, threads often don't share resources well
 - Packets can't back up

- Different flows often don't mix or coexist very well
 - Order of arrival often matters

- Balancing the use of resources is often difficult
 - What seems like a good idea sometimes isn't



Copyright © 2015 Intel Corporation

Chip Scaling

- Moore's Law 2x transistor density increase every 2 years
- Dennard Scaling (MOSFET scaling) Power density stays constant

Copyright © 2015 Intel Corporation

#OFADevWorkshop

Chip Scaling – How this affect Fabrics; A hardware View

WAS:

- Compute a scarce resource
- Simple memory hierarchies
- I/O was the bottleneck
- Form factors (FF) chip counts, chip I/O, connectors
- Cost: Designing, building, # chips, wires, connectors
- Key Metrics
 - Performance (BW, freq.), cost
- Less Key Metrics
 - Latency, FF, power

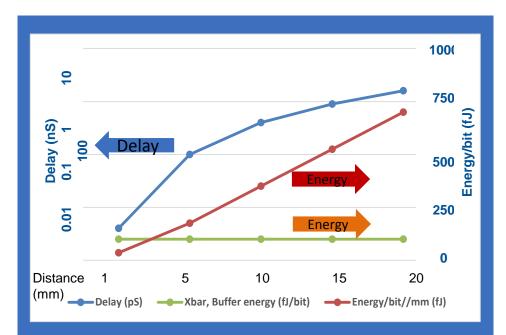
IS:

- Compute inexpensive
- Complex memory hierarchies
- Off-chip I/O faster than on-chip
- Form factors (FF) packaging, cooling external I/O interfaces
- Cost is components, integration/packaging, power
- Key Metrics
 - Performance (BW), Cost, Power, FF
- Less Key Metrics
 - Latency, frequency Copyright © 2015 Intel Corporation

Chip Scaling – How this affect Fabrics; A software View

• <u>WAS:</u>

- Throw the HW "over the wall", SW will find the performance
- Maximize compute utilization
- Users don't worry about Memory, let the OS handle it
- Cost: Time to released code, limited "legacy" code validation
- Key Metrics
 - Performance, cost, user interfaces
- Less Key Metrics
 - Power (system management)


• <u>IS:</u>

- SW complexity due to sharing, parallelism
- Compute abundant
- Efficient memory usage to save power
- Cost: Time to market, backwards compatibility design time
- Key metrics
 - Performance, power, user interfaces, cost
- Less Key metrics
 - None SW rules the systems

Process (Chip) Scaling; Building Fabrics

- On-die bandwidth
 - Lots of traces available
 - Tools must mature
- Energy (to move bits)
 - Linear with distance
 - Energy to move bits is your enemy
- Latency
 - RC product
 - Increases exponentially with distance

Cross die wires will need to be buffered Logic (switches) at clock cycle intervals Local BW is cheap, cross die BW will cost time and energy; optimize for locality

Process (Chip) Scaling Is Helping You, but less so moving bits

<u>22 nm</u>	pJoules	8 Bytes	Description	pJ/bit
FP Mul FP Add	6.4 8.1	A = B * C A = B + C	8B/Operand 8B/Operand	0.10 0.13 Will scale well with
FMA Xbar Switch	10.5 0.86	A = B * C + D	8B/Operand 12 ports	0.16 process and voltage
On-die Wire	11.20	8B per port 8B per 5 <u>mm</u>	50% toggle	0.18 More difficult to scale down
Phys Reg File SRAM	1.2 4.2	8B R/W 8B R/W	2KB, 3 ports Small (8KB)	0.02 Will scale well with process,
SRAM	16.7	8B R/W	Large (256KB)	0.26
In pkg DRAM	192	Stacks	64B accesses	3.00 Can move to 2-4 pJ/bit range; Depends on demand, volume
Off Pkg DRAM	640	DDR	64B accesses	10.00 leading to cost
In pkg Wire Off pkg wire In Cab wire	19.2 128 320	20 mm 200 mm 200 mm		0.30 2.00 5.00 Most challenging technologies to scale going forward
Optical	640	2 m	Cost and area	10.00

Power = Energy * Frequency + Leakage

Copyright © 2015 Intel Corporation

March 15 – 18, 2015

9

Pulling it Together in the Future

- Formerly scarce resources are now plentiful
 - Compute, logic, on-die memory, wires
 - Technology can support very large bandwidths
 - Moving bits will dominate the power consumed
 - Memory: DRAM still scaling, lagging logic, other technologies may mature
 - Electrical wires remain the low cost choice, optical provides distance and minimizes cables, but requires power and \$
 - Optical 5 15x higher \$ per Gb/s than electrical for distances <2 meters
- Specialized building blocks will proliferate
 - Simpler, faster, lower energy, power gated (off) when not used
 - Sea of resources
 - OS problem, managing, sharing the resources

A Software View

- SW engineers must become system engineers
 - HW engineers have hidden many system challenges from SW engineers
 - SW engineers need to rethink what they are willing to "pay" for features
 - Do you want heavy weight Oses?
 - Memory management, Scheduling, Execution model
 - Methods to exploit parallelism
 - General purpose vs. specialization
- Standardization
 - Standardize when time-to-market is reduced
 - Cost reduction due to increased volume
 - Independent of implementation

Conclusions

- Communication Packets are not cars
- Process scaling Moore's Law continues to provide more transistors/silicon area
 - Compute, logic trends to inexpensive
 - Communication trends to more expensive
- More specialization (accelerators, fixed function)
- SW evolving from performance to locality-based system management
- Standardize for time to market, cost between die, unclear on-die

Thank You

Copyright © 2015 Intel Corporation

#OFADevWorkshop