Writing Application Programs for
RDMA using OFA Software
Part3

Open Fabrics Alliance

C 2011 OpenFabrics Alliance, Inc

Copyright Statement

Copyright (C) 2016 OpenFabrics Alliance
Permission Is granted to copy, distribute and/or
modify this document under the terms of the
GNU Free Documentation License, Version 1.3
or any later version published by the Free
Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section
entitled "GNU Free Documentation License".

The license itself is at
https://www.gnu.org/licenses/fdl-1.3.en.html.

https://www.gnu.org/licenses/fdl-1.3.en.html

ap

recwv_cq

1 send_cq

send_cq_channel

1

recw_cc_channel

— Ccontext

chanmel

rdma_ewvent_channel

Ibv context

F— ops —

Ibv_ context ops

Yv v

i

send_cq

pd
ibv__comp
] Cq f— chanmnel —j»] - f— context —jm
Ibv_ channel
context
w
context
context
Ibwv__pd

pd

dewice

addr user virtual

Ibwv_devwvice

.—gpﬁ—-.

Ibwv_dewvice__ops

Ibv_send_wr

memaory
A A
addr addr
| |
— sg_liste| lbv_sge Ibw__sge

Mext

e sg_ list

Ibv_send_wr

| next

MNexxt

Data Structures Pyramid &)

——_ —_— e — —

— ————— —
lbv_send_wr

Transfer lbv_sge
Posting lbv_recv_wr

lbv_qp
lbv_qp_init attr

Transfer lbv_cq

Completion Ibv_wc
Ibv_comp_channel

Memory lbv_pd
Registration lov_mr

rdma_cm_id
Connection rdma_conn_param

Management rdma_cm_event
rdma event channel

Ibv_context
Misc Ibv_device
ibv_device attr

C 2011 OpenFabrics Alliance, Inc 4

Transfer lbv_post send
Ibv_post_recv

Posting rdma_create_gp rdma_destroy_gp

ibv_create_cq lbv_poll_cq ibv_destroy_cp
lbv_wc status str
ibv_create_comp_channel lbv_req_notify cq ibv_destroy_comp_channel

Ibv_get_cq_event
Ibv_ack_cq_events

Memory lov_alloc_pd Ibv_dealloc_pd
Registration Ibv_reg_mr lbv_dereg_mr

rdma_create id rdma_resolve_addr rdma_destroy id
rdma_resolve route
rdma_connect
rdma_disconnect
rdma_bind_addr
rdma_listen
Connection rdma_get_cm_event
Management rdma_ack_cm_event

rdma_event_str
rdma_accept
rdma_reject
rdma_create_event channel rdma_migrate id rdma_destroy event channel
rdma_get local_addr
rdma_get_peer_addr

Transfer
Completion

rdma_get_devices
Misc rdma_free_devices
rdma_query devices

Setup Use Break-Down

C 2011 OpenFabrics Alliance, Inc 5

RDMA_ WRITE operation &)

AMery different from finor m
A/ery different from Send/Recv

AOnly one side is active, other side is passive

AActive side A calls ibv_post_send()

Aassive side P does NOTHING!! i completely passive

C 2011 OpenFabrics Alliance, Inc

RDMA_ WRITE data flow (%

e —

ibv_post_send()
RDMA_WRITE

C 2011 OpenFabrics Alliance, Inc

RDMA_ WRITE operation

== — ———— ——

AActive side A calls ibv_post_send()
Aassive side P does NOTHING!! i completely passive

I Channel Adapters move data directly from active side
A's virtual memory into passive side P's virtual memory

I P does nothing i no ibv_post _recv(),
Ibv_post_send|()

I P sees nothing T no CPU cycles expended
I P receives no feedback T no events, no completions
ATransmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc

RDMA_ WRITE data flow (%

e —

ibv_post_send()
RDMA_WRITE

Active Passive
A P

C 2011 OpenFabrics Alliance, Inc

Differences with Send/Recv %

ALLIANCE

S . .
— —

= = —_ ———= _— S e e

A ocal active side A that calls ibv_post_send()
MUST know virtual memory location on remote

passive side P
MPassive side P knows nothing about virtual memory
location on active side A

Aassive side P does NOT call ibv_post recv() to
match active side A's ibv_post_send()

Mrior to the transfer, side P must inform side A of its
virtual memory location and its rkey

C 2011 OpenFabrics Alliance, Inc

Similarities with Send/Recv (5)

= — ~ e — —

ABoth ty

ABoth ty
each sid

ABoth ty

e ——— - ———— ———

nes of transfer are unbuffered

nes of transfer require virtual memory on
e to be registered by that side

nes of transfer operate asynchronously

ABoth ty

nes of transfer use same:

I work request list and scatter-gather list structures
I completion queues and completion events

| connection management operations and events

| verbs and data structures

Prior to RDMA WRITE

MBefore active side A issues ibv_post_send() for

RDMA_ WRITE, side P MUST inform side A of side
P's virtual memory location and rkey

Aassive side P must register its virtual memory for
both IBV_ACCESS LOCAL WRITE and
IBV_ACCESS REMOTE WRITE

AActive side A must register its virtual memory for
IBV_ACCESS REMOTE_READ

C 2011 OpenFabrics Alliance, Inc

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_READ IBV_ACCESS_REMOTE_WRITE

ibv_post_send)
RDMA_WRITE

Actwe Paﬁswe

C 2011 OpenFabrics Alliance, Inc 13

SWR for RDMA_WRITE

— — ——a———————— — - —

Mifferences from struct ibv_send wr for SEND

I opcode is IBV._WR_RDMA WRITE, not
IBV_WR_SEND

I lkey iIn SGE must have been created with access
IBV_ACCESS_REMOTE_ READ

I Two more fields in struct ibv_send_ wr must be
filled

Avr.rdma.remote _addr i remote side P's virtual
memory address

Avr.rdma.rkey i remote side P's rkey

ALLIANCE

RDMA READ operation

AVery different from finor m
A/ery different from Send/Recv

AOnly one side is active, other side is passive

AActive side A calls ibv_post_send() i YES, SEND!!!
Aassive side B does NOTHING!! i completely passive

C 2011 OpenFabrics Alliance, Inc

RDMA_ READ data flow (%

e ——

ibv_post_send|()
RDMA_READ

C 2011 OpenFabrics Alliance, Inc

RDMA READ operatlon

AActive side A calls ibv_post send() i YES, SEND!!
Aassive side P does NOTHING!!Ii completely passive

I Channel Adapters move data directly from passive side
P's virtual memory into active side A's virtual memory

I P does nothing i no ibv_post _recv() or
Ibv_post_send()

I P sees nothing T no CPU cycles expended
I P receives no feedback i no events, no completions
ATransmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc

RDMA READ data flow (%

e ——

ibv_post_send()
RDMA_READ

Active Passive
A P

C 2011 OpenFabrics Alliance, Inc

Prior to RDMA_READ

——— — — e

—= e ———— — —

MBefore active side A issues ibv_post_send() for
RDMA _READ, passive side P MUST inform side A
of side P's virtual memory location and rkey

MPassive side P must register its virtual memory for
IBV_ACCESS_REMOTE_READ

AActive side A must register its virtual memory for
IBV_ACCESS LOCAL WRITE and
IBV_ACCESS REMOTE WRITE

C 2011 OpenFabrics Alliance, Inc

RDMA_READ access rights

e

IBV_ACCESS_LOCAL_WRITE

IBV_ACCESS_REMOTE_WRITE IBV_ACCESS_REMOTE_READ

ibv_post_send)
RDMA_READ

Active Passive
A P

C 2011 OpenFabrics Alliance, Inc 20

OPENFABRICS

ALLIANCE

SWR for RDMA_READ

— —

== =S — e e

Mifferences from struct ibv_send wr for RECV
I Do NOT use struct ibv_recv_wr

I opcode is IBV._WR_ RDMA READ

ARECYV did not need an opcode in struct
Ibv_recv_wr)

I lkey iIn SGE must have been created with access
IBV_ACCESS LOCAL WRITE and

IBV_ACCESS REMOTE WRITE

I Two more fields in struct ibv_send_ wr must be filled

Avr.rdma.remote _addr i remote side P's virtual

Summary of RDMA access rights &)

IBV_ACCESS_REMOTE_READ

ibv_post_send()
RDMA_WRITE

ALLIANCE

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

Active

C 2011 OpenFabrics Alliance, Inc

RDMA_READ

IBV_ACCESS_REMOTE_READ

Passive
P

22

" 4 -
| “
.

OPENFABRICS

ALLIANCE

Ping-Pong example rdma-1

——

— M

——— —

AIlient does all -pbegwol &
| Client does rdma_write on ping data

| Client does rdma_read on pong data

Mgent fisl eepspiondguwr il o phip
I Agent's CPU utilization is O

Aoth need extra step before loop to exchange
buffer info

ABoth need extra step after loop to synchronize
end-of-run

C 2011 OpenFabrics Alliance, Inc

Client Agent

Loop

Loop

Data

l Y
24

C 2011 OpenFabrics Alliance, Inc

Ping buffers with access rights &)

ALLIANCE

Client Server
Agent

IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

Al
t_se"
ang::__ﬂﬁp‘n Passive
Pong > P
Data
Active
A

C 2011 OpenFabrics Alliance, Inc

Set up client data buffers

——

——— — ————

Kpipoogngo client needs 2 u
IFIrst contains origilnal f
Access rights IBV._ACCESS REMOTE_READ

allow client to post RDMA_WRITE to agent
iISecond gets reflected npoc

Access rights both IBV_ACCESS LOCAL WRITE
and IBV_ACCESS REMOTE_ WRITE allow client to
post RDMA_ READ from agent

C 2011 OpenFabrics Alliance, Inc

user_data_send_work_request

0 IBV_WR_RDMA_WRITE

1 IBV_WR_RDMA_READ
user_data_sge user_data_mr
0 0 | IBV_ACCESS_REMOTE_READ

lkey1
Ikey1
rkey1

1 1 | 1IBV_ACCESS_LOCAL_WRITE
. IBV_ACCESS_REMOTE_WRITE

Ikey2

lkey2

rkey2

user_data

o

-
—

C 2011 OpenFabrics Alliance, Inc

OPENFABRICS

ALLIANCE

Problems

e —

S —— —_—

Adow does client get the agent's buffer location
and access rights key (so client can write-into and
read-from agent's buffer)?

Adow does agent know when data transfer is

finished (during transfer the agent is completely
passive)?

C 2011 OpenFabrics Alliance, Inc

Solutions

A\gent must convey its buffer location and access
rights key to client prior to start of data transfer

I Accomplished via an exchange of messages
using send/recv called buffer-info exchange

AClient must convey an end-of-run indication to
agent after end of data transfer

I Accomplished via an exchange of messages
using send/recv called end-of-run ack exchange

C 2011 OpenFabrics Alliance, Inc

Aouffer-info exchange

| performed using send/recv

Aing-pong data transfer loop

| performed using rdma_write and rdma_read
fend-of-run ack exchange

| performed using send/recv

C 2011 OpenFabrics Alliance, Inc

Set up client buffer_info exchange 55

ALLIANCE

— = < - — — =

e — e =

AClient needs 2 new buffer info buffers

I one to hold information on local data buffers

An this demo, agent will not use this info

| other to hold information on remote data buffers
An this demo, agent has only 1 buffer

AClient needs 2 new work requests

I one to send local buffer_info to agent

An this demo, agent uses this message only for
synchronization

| other to recv remote buffer_info from agent

C 2011 OpenFabrics Alliance, Inc

I OAAMO CliIeant MiQr 1 1A

Client's local buffer info send WR &)

- —_——

—

local_buffer_info_work_request

IBV. WR_SEND

= local_buffer_info_sge local_buffer_info_mr
o
Ikey3
Ikey3 o e¥:3

local_buffer_info

rkey1

C 2011 OpenFabrics Alliance, Inc

Client's remote buffer info recv WR

remote_buffer_info_work_request

remote_buffer_info_sge

Ikey4

remote_buffer_info_mr

IBV_ACCESS_LOCAL_WRITE
lkey4
rkey4
remote_buffer_info
-

C 2011 OpenFabrics Alliance, Inc

PENFABRICS

0

ALLIANCE

33

Exchange of info about buffers &j

ALLIANCE

Clignt Server

0 IBV_ACCESS_LOCAL_WRITE

local_buffer_info remote_buffer_info

Send Recv

IBV_ACCESS_LOCAL_WRITE 0
remote_buffer_info local_buffer_info
Info Info
about Recv Send about
-
remote local
buffers buffers

C 2011 OpenFabrics Alliance, Inc

Set up end-of-run acks

Meeded because agent fisl e

| Client sends ack containing number of transfers
finished

ifAgent Awakes upo and senc
I Agent ends timings and starts break-down phase
AClient needs 2 new ack buffers

I one to hold final transfer count for sending to agent

I one to hold final ack for receiving from agent

AClient needs 2 new work requests

| one to send ack to agent

C 2011 OpenFabrics Alliance, Inc
Y oAthhAr FA rasvy Aanls aAl, FrArmAa A~naANNE

Exchange of end-of-run acks &)

- - —_—

—

Clignt Server

0 IBV_ACCESS_LOCAL_WRITE

send_ack recv_ack

Send Recv

IBV_ACCESS_LOCAL_WRITE 0
recv_ack send_ack
Ack Ack
for Recv Send for
final . final
synch synch

C 2011 OpenFabrics Alliance, Inc 36

Client's send ack work request &)

send_ack_work_request

IBV_WR_SEND

- send_ack_sge send_ack_mr
0
lkeysa lkeysa
rkeysa
send_ack
ack.count

C 2011 OpenFabrics Alliance, Inc

Client's receilve ack work request

recv_ack_work_request

recv_ack_sge

lkeyra

recv_ack

recv_ack_mr

IBV_ACCESS_LOCAL_WRITE

lkeyra
rkeyra

C 2011 OpenFabrics Alliance, Inc

38

1.buffer-info exchange

performed using send/recv
1.ping-pong data transfer loop

performed using rdma_write and rdma_read
1.end-of-run ack exchange

performed using send/recv

C 2011 OpenFabrics Alliance, Inc

1. Client buffer_info exchange

— — ~ ~ — ——

four_post_recv() to get agent's buffer_info
four_post_send() to send client's buffer_info

I buffer_info must be sent in network byte order
four_await_completion() for send
four_await_completion() for recv

AJse agent's buffer_info to fill in client's work requests
ifirst WR for RDMA_ WRI TE i
i second WR for RDMA READ 7
| buffer_info received in network byte order

C 2011 OpenFabrics Alliance, Inc

Client buffer-info exchange code 1 (Q)

ALLIANCE

——————

[* post a receive to catch the remote agent's buffer info */
ret = our_post_recv(client_conn,
&client_conn>remote_buffer_info_work request, options);
if (ret1=0){
goto outO;

}

[* now we send our local buffer info to the remote agent */
ret = our_post_send(client_conn,
&client_conn>local_buffer_info_work_request, options);
If (ret!'=0) {
goto outO;

}

C 2011 OpenFabrics Alliance, Inc 41

Client buffer-info exchange code 2 &)

ALLIANCE

[* wait for the send local buffer info to complete */
ret = our_await_completion(client_conn, &work_completion, options);
If (ret!'=0) {

goto outO;

}

[* wait for the recv remote buffer info to complete */
ret = our_await_completion(client_conn, &work completion, options);
if (ret!'=0) {
goto outO;
}

C 2011 OpenFabrics Alliance, Inc 42

Client buffer-info exchange code 3 .

[* use remote agent's buffer info to fill in

S

ALLIANCE

— e

* rdma part of our RDMA_ WRITE and RDMA _READ work requests
* to both point to the remote agent's single buffer

*/

client_conn>user _data_send_work request|
= ntohll(client_conr>remote_buff

client_conn>user _data_send_work request

client_conn>user _data_send work request|
= ntohll(client_conr>remote_buff
client_conn>user _data _send_ work request|

er

er

1]

0
0

= ntohl(client_conrrremote buffer
1

wr.rdma.remote_addr
__info[O].addr);
wr.rdma.rkey
Info[0].rkey);
wr.rdma.remote_addr
__info[O].addr);
wr.rdma.rkey

= ntohl(client_conrrremote buffer info[O].rkey);

C 2011 OpenFabrics Alliance, Inc

PENFABRICS
LLIANCE

2. Synopsis of client's ping-pong loop 0&)

————

S —— e

client_conn->wc_rdma_both = 0O;

while (client_conn->wc_rdma_both < options->limit) {
call our_post_send() for RDMA_ WRITE to agent
call our_await_completion()
call our_post_send() for RDMA READ from agent
call our_await_completion()
client_conn->wc_rdma_both++

C 2011 OpenFabrics Alliance, Inc 44

= —— ———

four_post_recv() to catch agent's final ack

Aill in local ack with final count in network byte order
four_post_send() to send ack with count to agent
four await_completion() for send

four await_completion() for recv

I Used for synchronization, contains no useful info

C 2011 OpenFabrics Alliance, Inc

Client's ack exchange code 1

————

/[* post a receive to catch the remote agent's“c_)\'r‘il»y ACK */
ret = our_post_recv(client_conn,
&client_conn>recv_ack work request, options);

If (ret!=0) {
goto outl;
}

/* tell the agent the number of iterations we finished */
client_conn>send_ack.ack count = htonl(client_ceranc rdma_both);

/* now we send our only ACK to the remote agent */
ret = our_post_send(client_conn,
&client_conn>send_ack work_request, options);

if (ret!'=0) {
goto outl;
}

C 2011 OpenFabrics Alliance, Inc 46

Client's ack exchange code 2 &3

—— —

[* wait for the send ACK to complete */
ret = our_await_completion(client_conn,&work_completion,options);
if (ret!=0) {
goto outl;
}

[* wait for agent's only ACK to complete */
ret = our_await_completion(client_conn,&work_completion,options);
If (ret!=0){

[* hit error or FLUSH_ERR, in either case leave now */

goto outl,;

}

C 2011 OpenFabrics Alliance, Inc 47

Example ping-rdma-1 (Q)

——————

ARun ping-rdma-1

AClient drives all data transfers

Agent completely passive during data transfer
ICPUusageis O

ANalk through client code as necessary

C 2011 OpenFabrics Alliance, Inc

OPENFABRICS

ALLIANCE

Set up agent data buffers

——

e J—

Kpipoogngdo agent needs 1 us
I Agent issues no operations on it

| Client issues RDMA_WRITE and RDMA _READ on
It

I Access rights IBV_ACCESS LOCAL_WRITE,
IBV_ACCESS REMOTE_WRITE and
IBV_ACCESS REMOTE READ

C 2011 OpenFabrics Alliance, Inc

Ping buffers with access rights &)

ALLIANCE

Client Server
Agent

IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

Al
t_se"
ang::__ﬂﬁp‘n Passive
Pong > P
Data
Active
A

C 2011 OpenFabrics Alliance, Inc 50

—

Agent's data buffer setup &j

— —

user_data_sge user_data user_data_mr

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_READ
IBV_ACCESS_REMOTE_WRITE
lkeya lkeya
rkeya

C 2011 OpenFabrics Alliance, Inc

Structure of Agent Use Phase &)

e

— — e —————— - ———————

Aouffer-info exchange

| performed using recv/send
Aing-pong data transfer loop

I do nothing! - client does all the work
Aend-of-run ack exchange

| performed using recv/send

C 2011 OpenFabrics Alliance, Inc

Set up agent buffer_info exchange <.

ALLIANCE

— = — < — =

e —

Agent needs 2 new buffer_info buffers

I One to hold information on all local data buffers
An this demo, agent has only 1 data buffer

I One to hold information on all remote data buffers
An this demo, agent will not use this info

Agent needs 2 new work requests

I One to send local buffer_info to client

I One to recv remote buffer_info from client

An this demo, agent will not use this info

C 2011 OpenFabrics Alliance, Inc

A\gent needs 2 new ack buffers

I one to hold final transfer count to receive from
client

| other to hold final ack to send to client
Adgent needs 2 new work requests

| one to recv ack from client

| other to send ack back to client

C 2011 OpenFabrics Alliance, Inc

— — : — - ' E— E— : — e

four_post_recv() to get client's buffer_info

i Needed for synchronization, info not used by
agent

four_post_recv() to get client's end-of-run ack
four_await_completion() for first recv
four_post_send() to send agent's buffer_info

four await_completion() for send

C 2011 OpenFabrics Alliance, Inc

Synopsis of agents plng pong Ioopogﬂs

ALLIANCE

—

===

Nothing to do!!! Completely passive

C 2011 OpenFabrics Alliance, Inc

Agent's ack exchange (Q)

——

_ E:\, = ?,’ }

Four_await_completion() for client's ack with count
Aeonvert final count from network byte order
four_post_send() to send final ack to client
four_await_completion() for send

C 2011 OpenFabrics Alliance, Inc

Example ping-rdma-1

—

—

Analk through agent code as necessary

C 2011 OpenFabrics Alliance, Inc

ALLIANCE

————

—— = e — - j’i ;}

Ping-Pong exercise ping-rdma-1e

AOpposite of previous example

AServer now does all the work

I Server does rdma_read on ping data

| Server does rdma_write on pong data
AClient does nothing i CPU utilization is 0
Aexercise for reader during labs

C 2011 OpenFabrics Alliance, Inc

Server drives all data transfers &)

Client

Loop

Y

C 2011 OpenFabrics Alliance, Inc

Data

Server Agent

Loop

ALLIANCE

60

Loop

Loop

Data

C 2011 OpenFabrics Alliance, Inc

How to improve performance

An everything done so far, all work requests (WRs
submitted to a send or receive queue have resulted
In a work completion (WC) being generated in a
completion queue (CQ)

ARDMA specifications require this for all receive
work requests (RWRSs), but not for all send work
requests (SWRs) 1 the user can control this

ANe have been requesting this for all our SWRs in
our_setup_send_ wr() by setting the value of the
send flag field in struct ibv_send wr to
IBV_SEND_ SIGNALED

C 2011 OpenFabrics Alliance, Inc

Unsignaled send work requests

ALLIANCE

——

—

= : —— ——

Af we set the send_flag field in struct ibv_send_wr
to 0, no WC is generated in the corresponding CQ if
that SWR completes successfully (a WC is always
generated on any error processing a posted WR)

A\ SWR with send_flag value of 0 is called an
unsignaled work request

S0 how does a user know when an unsignaled work
request completes successfully?

C 2011 OpenFabrics Alliance, Inc

Unsignaled work request completion

 —— a e —— —

AAn unsignaled WR completes successfully when:

I AWC for a subsequent WR is retrieved from the
CQ associated with the SQ where the unsignaled
WR was posted

I And that subsequent WR was posted on the same
SQ as the unsignaled WR

I And that subsequent WR is ordered after the
unsignaled WR

AOnly then can resources associated with the
unsignaled WR be reused

C 2011 OpenFabrics Alliance, Inc

Ordering rules

Arhe rules for processing WRs and WCs allow for
flexibility in actual implementations

ANRs submitted to a single SQ must be initiated,
sent and completed in the order they are submitted

Adowever, processing of the data transfers from
multiple WRs submitted to the same SQ can be
done in parallel T in particular, data may be placed
Into target memory Iin any order

C 2011 OpenFabrics Alliance, Inc

Ordering rules continued

- — m————— —— — ———

Af different messages, or parts of the same
message, being processed in parallel refer to the
same or overlapping buffers, then it is possible that
the last incoming write will not be the last outgoing
data sent

A-or an RDMA_ WRITE, the contents of the target
buffer are indeterminate until a subsequent Send
message Is completed by consuming a WC at the
target (e.g., an ACK is sent back and completes at

the target)

C 2011 OpenFabrics Alliance, Inc

Special ordering rules

——— — ~ — ——

R — —— e~

ANhen a user submits to the same SQ a SWR for
RDMA_ WRITE followed by a SWR for
RDMA _ READ targeting the same remote buffer
(which is what we are doing in this demo), the
RDMA READ must return the data as modified by
the RDMA WRITE

AThis is always true, whether or not the
RDMA_ WRITE SWR is signaled or unsignaled

C 2011 OpenFabrics Alliance, Inc

Benefiting from these rules

— — —

An this demo we submit to the same SQ a SWR
for RDMA WRITE followed by a SWR for
RDMA _READ both targeting the same buffer

Al herefore, the RDMA_WRITE SWR can be
unsignaled (i.e., it generates no WC) because the
WC generated by the SWR for RDMA _READ
guarantees that the SWR for RDMA_WRITE
completed successfully prior to the RDMA_ READ
SWR completion

C 2011 OpenFabrics Alliance, Inc

Revised client ping-pong loop

— e

* turn off SIGNALED flag on RDMA_ WRITE */
client_conn->user_data send work request.send flags
&= ~IBV_SEND_ SIGNALED;
client_conn->wc_rdma_both = 0;
while (client_conn->wc_rdma_both < options->limit) {
call our_post_send() for RDMA_ WRITE to agent
[***** do NOT call our_await_completion() *****/

call our_post _send() for RDMA_READ from agent
call our_await_completion()
client_conn->wc_rdma_both++;

C 2011 OpenFabrics Alliance, Inc 69

Ping-pong example plng -rdma-2 &

OPENFABRICS

LLIANCE

__."_j

ARun it and compare round-trlp time W|th previous
demo

Aiff the client.c files to show how minor the
differences are

ANalk the code as necessary

C 2011 OpenFabrics Alliance, Inc

PENFABRICS

LLIANCE

Ping-Pong using only RDMA_WRITE |

— -
= —

AJse RDMA_WRITE on both client and agent
| Client does rdma_ write of ping data
I Agent does rdma_write of pong data

Mroblem i how does each side know when it is its
turn to act?

ASolutions

| Exchange acks using send/recv

AClient sends ack after it completes its rdma,_ write
Adgent sends ack after it completes its rdma_ write
i Use memory patterns with no acks exchanged

C 2011 OpenFabrics Alliance, Inc

PENFABRICS
LLIANCE

Using RDMA_WRITE with ack

—_—

—

Client Server Agent

Loop

Loop

Data

ACK
/
ACK recVv

'

C 2011 OpenFabrics Alliance, Inc

Using RDMA_WRITE without ack &)

——

Server Agent

Client

Loop

Loop

Data

C 2011 OpenFabrics Alliance, Inc

Ping using RDMA_ WRITE with ack ¥

OPENFABRICS

ALLIANCE

——————

— - — ==

AJse RDMA_ WRITE followed by an ack

| Client does rdma_ write to deliver ping data to
agent

I Client sends ack to agent
I Agent receives ack from client

I Agent does rdma_ write to deliver pong data to
client

I Agent sends ack to client
| Client receives ack from agent

C 2011 OpenFabrics Alliance, Inc

A-ollowing each RDMA_WRITE with a send of an
ack effectively doubles the time to do a ping, and
doubles the time to do a pong

AVight as well just do a send of the ping data and a
send of the pong data (as we did in earlier demos)

Mow can we avoid the #fex

C 2011 OpenFabrics Alliance, Inc

Token Passing

ANMhese acks effectively
current writer to next writer

1.Client starts with token

2.Client does rdma_write to agent

3.Client passes token to agent (sends ack)
4.Agent gets the token (receives ack)
5.Agent does rdma_write to client

6.Agent passes token to client (sends ack)
7.Client gets token from agent (receives ack)
8.Loop to step 2

C 2011 OpenFabrics Alliance, Inc

Using the Data as the Token

S

Anstead of passing the token separately from data, use the
data as the token

I That's how It worked with Send/Recv!!

ARequires the side receiving the data to somehow
recognize that it has ALL arrived

ASimple way i detect a change in buffer contents
I Requires busy waiting on the data buffer

I Must be sure ENTIRE buffer has been changed
fOne possible technique

I Fill receive buffer with character not in data

I Busy wait until character is nowhere in buffer

C 2011 OpenFabrics Alliance, Inc 77

OPENFABRICS
ALLIANCE

Ping-Pong example ping-rdma-3 &%)

e

— —

AJse RDMA_ WRITE without ack
AClient needs 2 buffers (as before)
Adgent also needs 2 buffers (before had only 1)

I Client does rdma_write into agent's ping buffer

I Agent copies data from ping buffer to pong buffer

I Agent does rdma_write from pong buffer to client

Acach side needs to detect arrival of ALL data from other side

ADone by busy waiting for change in contents of ENTIRE
receive buffer

C 2011 OpenFabrics Alliance, Inc

Data flow Iin ping-rdma-3 &)

R ———— —

Client Server Agent

T *

Loop Copy Loop

Pong = RDMA_WRITE
Data

C 2011 OpenFabrics Alliance, Inc 79

1.Client fills ping buffer with data pattern containing only
printable characters

2.Client fills pong buffer with different pattern containing all
binary zeroes (\O' character)

3.Client does RDMA_WRITE of ping data to agent
4.Client waits for RDMA_WRITE to complete

5.Client busy waits until all binary zeroes in pong buffer have
been completely replaced

6.Client optionally verifies data in pong buffer
7.Client loops to step 2

C 2011 OpenFabrics Alliance, Inc 80

Agent buffers and pattern use

: T T —— —— - ———

1.Agent fills ping buffer with pattern containing all
binary zeroes (\O' character)

2.Agent busy waits until all binary zeros in ping buffer
have been completely replaced

3.Agent copies ping buffer into pong buffer

4.Agent fills ping buffer with pattern containing all
binary zeroes (\O' character)

5.Agent does RDMA_ WRITE of pong data to client
6.Agent waits for RDMA_WRITE to complete

/.Agent loops to step 2

C 2011 OpenFabrics Alliance, Inc

Example plng rdma 3 OPENFS

ALLIANCE

Moth sides take turns domg RDI\/IA WRITE
AJser data is the token

A=ach side busy waits on data buffer to detect token
Mo extra ack messages are necessary

ARun demo
ANalk code as necessary

C 2011 OpenFabrics Alliance, Inc

LLIANCE

Ping-Pong using only RDMA_READ O%)

—
—

AJse RDMA READ on both client and server

| Server does rdma_read to get ping data from
client

I Client does rdma_read to get pong data from
server

Aroblem i same as before i how to know when
I't's Ayour turno to ack

ASolution with acks to pass token
| Exercise for reader
ASolution without acks 1 is it possible?

Z 2P%2 NoenF it rics Alliance. Inc

LLLLL

Using only RDMA READ with ack Opﬁﬁs

e

C 2011 OpenFabrics Alliance, Inc

