
1

Writing Application Programs for

RDMA using OFA Software

Part 3

C 2011 OpenFabrics Alliance, Inc 1

Open Fabrics Alliance

Copyright Statement

Copyright (C) 2016 OpenFabrics Alliance

Permission is granted to copy, distribute and/or

modify this document under the terms of the

GNU Free Documentation License, Version 1.3

or any later version published by the Free

Software Foundation; with no Invariant Sections,

no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section

entitled "GNU Free Documentation License".

The license itself is at

https://www.gnu.org/licenses/fdl-1.3.en.html.
www.openfabrics.org 2

https://www.gnu.org/licenses/fdl-1.3.en.html

C 2011 OpenFabrics Alliance, Inc 3

C 2011 OpenFabrics Alliance, Inc 4

Data Structures Pyramid

C 2011 OpenFabrics Alliance, Inc 5

C 2011 OpenFabrics Alliance, Inc 6

RDMA_WRITE operation

ÅVery different from ñnormalò socket operations

ÅVery different from Send/Recv

ÅOnly one side is active, other side is passive

ÅActive side A calls ibv_post_send()

ÅPassive side P does NOTHING!! ïcompletely passive

C 2011 OpenFabrics Alliance, Inc 7

RDMA_WRITE data flow

C 2011 OpenFabrics Alliance, Inc 8

RDMA_WRITE operation

ÅActive side A calls ibv_post_send()

ÅPassive side P does NOTHING!! ïcompletely passive

ïChannel Adapters move data directly from active side

A's virtual memory into passive side P's virtual memory

ïP does nothing ïno ibv_post_recv(),

ibv_post_send()

ïP sees nothing ïno CPU cycles expended

ïP receives no feedback ïno events, no completions

ÅTransmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc 9

RDMA_WRITE data flow

C 2011 OpenFabrics Alliance, Inc 10

Differences with Send/Recv

ÅLocal active side A that calls ibv_post_send()

MUST know virtual memory location on remote

passive side P

ÅPassive side P knows nothing about virtual memory

location on active side A

ÅPassive side P does NOT call ibv_post_recv() to

match active side A's ibv_post_send()

ÅPrior to the transfer, side P must inform side A of its

virtual memory location and its rkey

C 2011 OpenFabrics Alliance, Inc 11

Similarities with Send/Recv

ÅBoth types of transfer are unbuffered

ÅBoth types of transfer require virtual memory on

each side to be registered by that side

ÅBoth types of transfer operate asynchronously

ÅBoth types of transfer use same:

ïwork request list and scatter-gather list structures

ïcompletion queues and completion events

ïconnection management operations and events

ïverbs and data structures

ÅBoth types of transfer move messages, not streams

C 2011 OpenFabrics Alliance, Inc 12

Prior to RDMA_WRITE

ÅBefore active side A issues ibv_post_send() for

RDMA_WRITE, side P MUST inform side A of side

P's virtual memory location and rkey

ÅPassive side P must register its virtual memory for

both IBV_ACCESS_LOCAL_WRITE and

IBV_ACCESS_REMOTE_WRITE

ÅActive side A must register its virtual memory for

IBV_ACCESS_REMOTE_READ

C 2011 OpenFabrics Alliance, Inc 13

RDMA_WRITE access rights

C 2011 OpenFabrics Alliance, Inc 14

SWR for RDMA_WRITE

ÅDifferences from struct ibv_send_wr for SEND

ïopcode is IBV_WR_RDMA_WRITE, not

IBV_WR_SEND

ïlkey in SGE must have been created with access

IBV_ACCESS_REMOTE_READ

ïTwo more fields in struct ibv_send_wr must be

filled

Åwr.rdma.remote_addr ïremote side P's virtual

memory address

Åwr.rdma.rkeyïremote side P's rkey

ÅRemote memory on side P must be one

contiguous block (no scatter into remote memory)

C 2011 OpenFabrics Alliance, Inc 15

RDMA_READ operation

ÅVery different from ñnormalò socket operations

ÅVery different from Send/Recv

ÅOnly one side is active, other side is passive

ÅActive side A calls ibv_post_send() ïYES, SEND!!!

ÅPassive side B does NOTHING!! ïcompletely passive

C 2011 OpenFabrics Alliance, Inc 16

RDMA_READ data flow

C 2011 OpenFabrics Alliance, Inc 17

RDMA_READ operation

ÅActive side A calls ibv_post_send() ïYES, SEND!!!

ÅPassive side P does NOTHING!!!ïcompletely passive

ïChannel Adapters move data directly from passive side

P's virtual memory into active side A's virtual memory

ïP does nothing ïno ibv_post_recv() or

ibv_post_send()

ïP sees nothing ïno CPU cycles expended

ïP receives no feedback ïno events, no completions

ÅTransmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc 18

RDMA_READ data flow

C 2011 OpenFabrics Alliance, Inc 19

Prior to RDMA_READ

ÅBefore active side A issues ibv_post_send() for

RDMA_READ, passive side P MUST inform side A

of side P's virtual memory location and rkey

ÅPassive side P must register its virtual memory for

IBV_ACCESS_REMOTE_READ

ÅActive side A must register its virtual memory for

IBV_ACCESS_LOCAL_WRITE and

IBV_ACCESS_REMOTE_WRITE

C 2011 OpenFabrics Alliance, Inc 20

RDMA_READ access rights

C 2011 OpenFabrics Alliance, Inc 21

SWR for RDMA_READ

ÅDifferences from struct ibv_send_wr for RECV

ïDo NOT use struct ibv_recv_wr

ïopcode is IBV_WR_RDMA_READ

Å(RECV did not need an opcode in struct

ibv_recv_wr)

ïlkey in SGE must have been created with access

IBV_ACCESS_LOCAL_WRITE and

IBV_ACCESS_REMOTE_WRITE

ïTwo more fields in struct ibv_send_wr must be filled

Åwr.rdma.remote_addr ïremote side P's virtual

memory address

Åwr.rdma.rkeyïremote side P's rkey

C 2011 OpenFabrics Alliance, Inc 22

Summary of RDMA access rights

C 2011 OpenFabrics Alliance, Inc 23

Ping-Pong example rdma-1

ÅClient does all the work in the ñping-pongò loop

ïClient does rdma_write on ping data

ïClient does rdma_read on pong data

ÅAgent ñsleepsò during ñping-pongò loop

ïAgent's CPU utilization is 0

ÅBoth need extra step before loop to exchange

buffer info

ÅBoth need extra step after loop to synchronize

end-of-run

C 2011 OpenFabrics Alliance, Inc 24

Ping-pong using RDMA

C 2011 OpenFabrics Alliance, Inc 25

Ping buffers with access rights

C 2011 OpenFabrics Alliance, Inc 26

Set up client data buffers

Åñping-pongò client needs 2 user data buffers

ïFirst contains original ñpingò data

ÅAccess rights IBV_ACCESS_REMOTE_READ

allow client to post RDMA_WRITE to agent

ïSecond gets reflected ñpongò data

ÅAccess rights both IBV_ACCESS_LOCAL_WRITE

and IBV_ACCESS_REMOTE_WRITE allow client to

post RDMA_READ from agent

C 2011 OpenFabrics Alliance, Inc 27

Client's data buffers,WRs and MRs

C 2011 OpenFabrics Alliance, Inc 28

Problems

ÅHow does client get the agent's buffer location

and access rights key (so client can write-into and

read-from agent's buffer)?

ÅHow does agent know when data transfer is

finished (during transfer the agent is completely

passive)?

C 2011 OpenFabrics Alliance, Inc 29

Solutions

ÅAgent must convey its buffer location and access

rights key to client prior to start of data transfer

ïAccomplished via an exchange of messages

using send/recv called buffer-info exchange

ÅClient must convey an end-of-run indication to

agent after end of data transfer

ïAccomplished via an exchange of messages

using send/recv called end-of-run ack exchange

C 2011 OpenFabrics Alliance, Inc 30

Structure of Client Use Phase

Åbuffer-info exchange

ïperformed using send/recv

Åping-pong data transfer loop

ïperformed using rdma_write and rdma_read

Åend-of-run ack exchange

ïperformed using send/recv

C 2011 OpenFabrics Alliance, Inc 31

Set up client buffer_info exchange

ÅClient needs 2 new buffer_info buffers

ïone to hold information on local data buffers

ÅIn this demo, agent will not use this info

ïother to hold information on remote data buffers

ÅIn this demo, agent has only 1 buffer

ÅClient needs 2 new work requests

ïone to send local buffer_info to agent

ÅIn this demo, agent uses this message only for

synchronization

ïother to recv remote buffer_info from agent

ÅIn this demo, client must use this info in both the

C 2011 OpenFabrics Alliance, Inc 32

Client's local buffer_info send WR

C 2011 OpenFabrics Alliance, Inc 33

Client's remote buffer_info recv WR

C 2011 OpenFabrics Alliance, Inc 34

Exchange of info about buffers

C 2011 OpenFabrics Alliance, Inc 35

Set up end-of-run acks

ÅNeeded because agent ñsleepsò during data transfer

ïClient sends ack containing number of transfers

finished

ïAgent ñwakes upò and sends reply ack to client

ïAgent ends timings and starts break-down phase

ÅClient needs 2 new ack buffers

ïone to hold final transfer count for sending to agent

ïone to hold final ack for receiving from agent

ÅClient needs 2 new work requests

ïone to send ack to agent

ïother to recv ack back from agent

C 2011 OpenFabrics Alliance, Inc 36

Exchange of end-of-run acks

C 2011 OpenFabrics Alliance, Inc 37

Client's send ack work request

C 2011 OpenFabrics Alliance, Inc 38

Client's receive ack work request

C 2011 OpenFabrics Alliance, Inc 39

Structure of Client Use Phase

1.buffer-info exchange

performed using send/recv

1.ping-pong data transfer loop

performed using rdma_write and rdma_read

1.end-of-run ack exchange

performed using send/recv

C 2011 OpenFabrics Alliance, Inc 40

1. Client buffer_info exchange

Åour_post_recv() to get agent's buffer_info

Åour_post_send() to send client's buffer_info

ïbuffer_info must be sent in network byte order

Åour_await_completion() for send

Åour_await_completion() for recv

ÅUse agent's buffer_info to fill in client's work requests

ïfirst WR for RDMA_WRITE ñpingò data to agent

ïsecond WR for RDMA_READ ñpongò data from agent

ïbuffer_info received in network byte order

C 2011 OpenFabrics Alliance, Inc 41

Client buffer-info exchange code 1

/* post a receive to catch the remote agent's buffer info */

ret = our_post_recv(client_conn,

&client_conn->remote_buffer_info_work_request, options);

if (ret != 0) {

goto out0;

}

/* now we send our local buffer info to the remote agent */

ret = our_post_send(client_conn,

&client_conn->local_buffer_info_work_request, options);

if (ret != 0) {

goto out0;

}

C 2011 OpenFabrics Alliance, Inc 42

Client buffer-info exchange code 2

/* wait for the send local buffer info to complete */

ret = our_await_completion(client_conn, &work_completion, options);

if (ret != 0) {

goto out0;

}

/* wait for the recv remote buffer info to complete */

ret = our_await_completion(client_conn, &work_completion, options);

if (ret != 0) {

goto out0;

}

C 2011 OpenFabrics Alliance, Inc 43

Client buffer-info exchange code 3

/* use remote agent's buffer info to fill in

* rdma part of our RDMA_WRITE and RDMA_READ work requests

* to both point to the remote agent's single buffer

*/

client_conn->user_data_send_work_request[0].wr.rdma.remote_addr

= ntohll(client_conn->remote_buffer_info[0].addr);

client_conn->user_data_send_work_request[0].wr.rdma.rkey

= ntohl(client_conn->remote_buffer_info[0].rkey);

client_conn->user_data_send_work_request[1].wr.rdma.remote_addr

= ntohll(client_conn->remote_buffer_info[0].addr);

client_conn->user_data_send_work_request[1].wr.rdma.rkey

= ntohl(client_conn->remote_buffer_info[0].rkey);

C 2011 OpenFabrics Alliance, Inc 44

2. Synopsis of client's ping-pong loop

client_conn->wc_rdma_both = 0;

while (client_conn->wc_rdma_both < options->limit) {

call our_post_send() for RDMA_WRITE to agent

call our_await_completion()

call our_post_send() for RDMA_READ from agent

call our_await_completion()

client_conn->wc_rdma_both++

}

C 2011 OpenFabrics Alliance, Inc 45

3. Client's ack exchange

Åour_post_recv() to catch agent's final ack

Åfill in local ack with final count in network byte order

Åour_post_send() to send ack with count to agent

Åour_await_completion() for send

Åour_await_completion() for recv

ïUsed for synchronization, contains no useful info

C 2011 OpenFabrics Alliance, Inc 46

Client's ack exchange code 1

/* post a receive to catch the remote agent's only ACK */

ret = our_post_recv(client_conn,

&client_conn->recv_ack_work_request, options);

if (ret != 0) {

goto out1;

}

/* tell the agent the number of iterations we finished */

client_conn->send_ack.ack_count = htonl(client_conn->wc_rdma_both);

/* now we send our only ACK to the remote agent */

ret = our_post_send(client_conn,

&client_conn->send_ack_work_request, options);

if (ret != 0) {

goto out1;

}

C 2011 OpenFabrics Alliance, Inc 47

Client's ack exchange code 2

/* wait for the send ACK to complete */

ret = our_await_completion(client_conn,&work_completion,options);

if (ret != 0) {

goto out1;

}

/* wait for agent's only ACK to complete */

ret = our_await_completion(client_conn,&work_completion,options);

if (ret != 0) {

/* hit error or FLUSH_ERR, in either case leave now */

goto out1;

}

C 2011 OpenFabrics Alliance, Inc 48

Example ping-rdma-1

ÅRun ping-rdma-1

ÅClient drives all data transfers

ÅAgent completely passive during data transfer

ïCPU usage is 0

ÅWalk through client code as necessary

C 2011 OpenFabrics Alliance, Inc 49

Set up agent data buffers

Åñping-pongò agent needs 1 user data buffer

ïAgent issues no operations on it

ïClient issues RDMA_WRITE and RDMA_READ on

it

ïAccess rights IBV_ACCESS_LOCAL_WRITE,

IBV_ACCESS_REMOTE_WRITE and

IBV_ACCESS_REMOTE_READ

C 2011 OpenFabrics Alliance, Inc 50

Ping buffers with access rights

C 2011 OpenFabrics Alliance, Inc 51

Agent's data buffer setup

C 2011 OpenFabrics Alliance, Inc 52

Structure of Agent Use Phase

Åbuffer-info exchange

ïperformed using recv/send

Åping-pong data transfer loop

ïdo nothing! - client does all the work

Åend-of-run ack exchange

ïperformed using recv/send

C 2011 OpenFabrics Alliance, Inc 53

Set up agent buffer_info exchange

ÅAgent needs 2 new buffer_info buffers

ïOne to hold information on all local data buffers

ÅIn this demo, agent has only 1 data buffer

ïOne to hold information on all remote data buffers

ÅIn this demo, agent will not use this info

ÅAgent needs 2 new work requests

ïOne to send local buffer_info to client

ïOne to recv remote buffer_info from client

ÅIn this demo, agent will not use this info

C 2011 OpenFabrics Alliance, Inc 54

Set up end-of-run acks

ÅAgent needs 2 new ack buffers

ïone to hold final transfer count to receive from

client

ïother to hold final ack to send to client

ÅAgent needs 2 new work requests

ïone to recv ack from client

ïother to send ack back to client

C 2011 OpenFabrics Alliance, Inc 55

Agent buffer_info exchange

Åour_post_recv() to get client's buffer_info

ïNeeded for synchronization, info not used by

agent

Åour_post_recv() to get client's end-of-run ack

Åour_await_completion() for first recv

Åour_post_send() to send agent's buffer_info

Åour_await_completion() for send

C 2011 OpenFabrics Alliance, Inc 56

Synopsis of agent's ping-pong loop

Nothing to do!!! Completely passive

C 2011 OpenFabrics Alliance, Inc 57

Agent's ack exchange

Åour_await_completion() for client's ack with count

Åconvert final count from network byte order

Åour_post_send() to send final ack to client

Åour_await_completion() for send

C 2011 OpenFabrics Alliance, Inc 58

Example ping-rdma-1

ÅWalk through agent code as necessary

C 2011 OpenFabrics Alliance, Inc 59

Ping-Pong exercise ping-rdma-1e

ÅOpposite of previous example

ÅServer now does all the work

ïServer does rdma_read on ping data

ïServer does rdma_write on pong data

ÅClient does nothing ïCPU utilization is 0

ÅExercise for reader during labs

C 2011 OpenFabrics Alliance, Inc 60

Server drives all data transfers

C 2011 OpenFabrics Alliance, Inc 61

Another look at ping-rdma-1

C 2011 OpenFabrics Alliance, Inc 62

How to improve performance

ÅIn everything done so far, all work requests (WRs)

submitted to a send or receive queue have resulted

in a work completion (WC) being generated in a

completion queue (CQ)

ÅRDMA specifications require this for all receive

work requests (RWRs), but not for all send work

requests (SWRs) ïthe user can control this

ÅWe have been requesting this for all our SWRs in

our_setup_send_wr() by setting the value of the

send_flag field in struct ibv_send_wr to

IBV_SEND_SIGNALED

C 2011 OpenFabrics Alliance, Inc 63

Unsignaled send work requests

ÅIf we set the send_flag field in struct ibv_send_wr

to 0, no WC is generated in the corresponding CQ if

that SWR completes successfully (a WC is always

generated on any error processing a posted WR)

ÅA SWR with send_flag value of 0 is called an

unsignaled work request

ÅSo how does a user know when an unsignaled work

request completes successfully?

C 2011 OpenFabrics Alliance, Inc 64

Unsignaled work request completion

ÅAn unsignaled WR completes successfully when:

ïA WC for a subsequent WR is retrieved from the

CQ associated with the SQ where the unsignaled

WR was posted

ïAnd that subsequent WR was posted on the same

SQ as the unsignaled WR

ïAnd that subsequent WR is ordered after the

unsignaled WR

ÅOnly then can resources associated with the

unsignaled WR be reused

C 2011 OpenFabrics Alliance, Inc 65

Ordering rules

ÅThe rules for processing WRs and WCs allow for

flexibility in actual implementations

ÅWRs submitted to a single SQ must be initiated,

sent and completed in the order they are submitted

ÅHowever, processing of the data transfers from

multiple WRs submitted to the same SQ can be

done in parallel ïin particular, data may be placed

into target memory in any order

C 2011 OpenFabrics Alliance, Inc 66

Ordering rules continued

ÅIf different messages, or parts of the same

message, being processed in parallel refer to the

same or overlapping buffers, then it is possible that

the last incoming write will not be the last outgoing

data sent

ÅFor an RDMA_WRITE, the contents of the target

buffer are indeterminate until a subsequent Send

message is completed by consuming a WC at the

target (e.g., an ACK is sent back and completes at

the target)

C 2011 OpenFabrics Alliance, Inc 67

Special ordering rules

ÅWhen a user submits to the same SQ a SWR for

RDMA_WRITE followed by a SWR for

RDMA_READ targeting the same remote buffer

(which is what we are doing in this demo), the

RDMA_READ must return the data as modified by

the RDMA_WRITE

ÅThis is always true, whether or not the

RDMA_WRITE SWR is signaled or unsignaled

C 2011 OpenFabrics Alliance, Inc 68

Benefiting from these rules

ÅIn this demo we submit to the same SQ a SWR

for RDMA_WRITE followed by a SWR for

RDMA_READ both targeting the same buffer

ÅTherefore, the RDMA_WRITE SWR can be

unsignaled (i.e., it generates no WC) because the

WC generated by the SWR for RDMA_READ

guarantees that the SWR for RDMA_WRITE

completed successfully prior to the RDMA_READ

SWR completion

C 2011 OpenFabrics Alliance, Inc 69

Revised client ping-pong loop

/* turn off SIGNALED flag on RDMA_WRITE */

client_conn->user_data_send_work_request.send_flags

&= ~IBV_SEND_SIGNALED;

client_conn->wc_rdma_both = 0;

while (client_conn->wc_rdma_both < options->limit) {

call our_post_send() for RDMA_WRITE to agent

/***** do NOT call our_await_completion() *****/

call our_post_send() for RDMA_READ from agent

call our_await_completion()

client_conn->wc_rdma_both++;

}

C 2011 OpenFabrics Alliance, Inc 70

Ping-pong example ping-rdma-2

ÅRun it and compare round-trip time with previous

demo

ÅDiff the client.c files to show how minor the

differences are

ÅWalk the code as necessary

C 2011 OpenFabrics Alliance, Inc 71

Ping-Pong using only RDMA_WRITE

ÅUse RDMA_WRITE on both client and agent

ïClient does rdma_write of ping data

ïAgent does rdma_write of pong data

ÅProblem ïhow does each side know when it is its

turn to act?

ÅSolutions

ïExchange acks using send/recv

ÅClient sends ack after it completes its rdma_write

ÅAgent sends ack after it completes its rdma_write

ïUse memory patterns with no acks exchanged

C 2011 OpenFabrics Alliance, Inc 72

Using RDMA_WRITE with ack

C 2011 OpenFabrics Alliance, Inc 73

Using RDMA_WRITE without ack

C 2011 OpenFabrics Alliance, Inc 74

Ping using RDMA_WRITE with ack

ÅUse RDMA_WRITE followed by an ack

ïClient does rdma_write to deliver ping data to

agent

ïClient sends ack to agent

ïAgent receives ack from client

ïAgent does rdma_write to deliver pong data to

client

ïAgent sends ack to client

ïClient receives ack from agent

C 2011 OpenFabrics Alliance, Inc 75

Performance issues

ÅFollowing each RDMA_WRITE with a send of an

ack effectively doubles the time to do a ping, and

doubles the time to do a pong

ÅMight as well just do a send of the ping data and a

send of the pong data (as we did in earlier demos)

ÅHow can we avoid the ñextraò ack sends?

C 2011 OpenFabrics Alliance, Inc 76

Token Passing

ÅThese acks effectively ñpass the tokenò from

current writer to next writer

1.Client starts with token

2.Client does rdma_write to agent

3.Client passes token to agent (sends ack)

4.Agent gets the token (receives ack)

5.Agent does rdma_write to client

6.Agent passes token to client (sends ack)

7.Client gets token from agent (receives ack)

8.Loop to step 2

C 2011 OpenFabrics Alliance, Inc 77

Using the Data as the Token

ÅInstead of passing the token separately from data, use the

data as the token

ïThat's how it worked with Send/Recv!!

ÅRequires the side receiving the data to somehow

recognize that it has ALL arrived

ÅSimple way ïdetect a change in buffer contents

ïRequires busy waiting on the data buffer

ïMust be sure ENTIRE buffer has been changed

ÅOne possible technique

ïFill receive buffer with character not in data

ïBusy wait until character is nowhere in buffer

C 2011 OpenFabrics Alliance, Inc 78

Ping-Pong example ping-rdma-3

ÅUse RDMA_WRITE without ack

ÅClient needs 2 buffers (as before)

ÅAgent also needs 2 buffers (before had only 1)

ïClient does rdma_write into agent's ping buffer

ïAgent copies data from ping buffer to pong buffer

ïAgent does rdma_write from pong buffer to client

ÅEach side needs to detect arrival of ALL data from other side

ÅDone by busy waiting for change in contents of ENTIRE

receive buffer

C 2011 OpenFabrics Alliance, Inc 79

Data flow in ping-rdma-3

C 2011 OpenFabrics Alliance, Inc 80

Client buffers and pattern use

1.Client fills ping buffer with data pattern containing only

printable characters

2.Client fills pong buffer with different pattern containing all

binary zeroes ('\0' character)

3.Client does RDMA_WRITE of ping data to agent

4.Client waits for RDMA_WRITE to complete

5.Client busy waits until all binary zeroes in pong buffer have

been completely replaced

6.Client optionally verifies data in pong buffer

7.Client loops to step 2

C 2011 OpenFabrics Alliance, Inc 81

Agent buffers and pattern use

1.Agent fills ping buffer with pattern containing all

binary zeroes ('\0' character)

2.Agent busy waits until all binary zeros in ping buffer

have been completely replaced

3.Agent copies ping buffer into pong buffer

4.Agent fills ping buffer with pattern containing all

binary zeroes ('\0' character)

5.Agent does RDMA_WRITE of pong data to client

6.Agent waits for RDMA_WRITE to complete

7.Agent loops to step 2

C 2011 OpenFabrics Alliance, Inc 82

Example ping-rdma-3

ÅBoth sides take turns doing RDMA_WRITE

ÅUser data is the token

ÅEach side busy waits on data buffer to detect token

ÅNo extra ack messages are necessary

ÅRun demo

ÅWalk code as necessary

C 2011 OpenFabrics Alliance, Inc 83

Ping-Pong using only RDMA_READ

ÅUse RDMA_READ on both client and server

ïServer does rdma_read to get ping data from

client

ïClient does rdma_read to get pong data from

server

ÅProblem ïsame as before ïhow to know when

it's ñyour turnò to ack

ÅSolution with acks to pass token

ïExercise for reader

ÅSolution without acks ïis it possible?

ïChallenge for reader to prove or disprove this

C 2011 OpenFabrics Alliance, Inc 84

Using only RDMA_READ with ack

