
1

Writing Application Programs for

RDMA using OFA Software

Part 3

C 2011 OpenFabrics Alliance, Inc 1

Open Fabrics Alliance

Copyright Statement

Copyright (C) 2016 OpenFabrics Alliance

Permission is granted to copy, distribute and/or

modify this document under the terms of the

GNU Free Documentation License, Version 1.3

or any later version published by the Free

Software Foundation; with no Invariant Sections,

no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section

entitled "GNU Free Documentation License".

The license itself is at

https://www.gnu.org/licenses/fdl-1.3.en.html.
www.openfabrics.org 2

https://www.gnu.org/licenses/fdl-1.3.en.html

C 2011 OpenFabrics Alliance, Inc 3

C 2011 OpenFabrics Alliance, Inc 4

Data Structures Pyramid

C 2011 OpenFabrics Alliance, Inc 5

C 2011 OpenFabrics Alliance, Inc 6

RDMA_WRITE operation

•Very different from “normal” socket operations

•Very different from Send/Recv

•Only one side is active, other side is passive

•Active side A calls ibv_post_send()

•Passive side P does NOTHING!! – completely passive

C 2011 OpenFabrics Alliance, Inc 7

RDMA_WRITE data flow

C 2011 OpenFabrics Alliance, Inc 8

RDMA_WRITE operation

•Active side A calls ibv_post_send()

•Passive side P does NOTHING!! – completely passive

–Channel Adapters move data directly from active side

A's virtual memory into passive side P's virtual memory

–P does nothing – no ibv_post_recv(),

ibv_post_send()

–P sees nothing – no CPU cycles expended

–P receives no feedback – no events, no completions

•Transmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc 9

RDMA_WRITE data flow

C 2011 OpenFabrics Alliance, Inc 10

Differences with Send/Recv

•Local active side A that calls ibv_post_send()

MUST know virtual memory location on remote

passive side P

•Passive side P knows nothing about virtual memory

location on active side A

•Passive side P does NOT call ibv_post_recv() to

match active side A's ibv_post_send()

•Prior to the transfer, side P must inform side A of its

virtual memory location and its rkey

C 2011 OpenFabrics Alliance, Inc 11

Similarities with Send/Recv

•Both types of transfer are unbuffered

•Both types of transfer require virtual memory on

each side to be registered by that side

•Both types of transfer operate asynchronously

•Both types of transfer use same:

–work request list and scatter-gather list structures

–completion queues and completion events

–connection management operations and events

–verbs and data structures

•Both types of transfer move messages, not streams

C 2011 OpenFabrics Alliance, Inc 12

Prior to RDMA_WRITE

•Before active side A issues ibv_post_send() for

RDMA_WRITE, side P MUST inform side A of side

P's virtual memory location and rkey

•Passive side P must register its virtual memory for

both IBV_ACCESS_LOCAL_WRITE and

IBV_ACCESS_REMOTE_WRITE

•Active side A must register its virtual memory for

IBV_ACCESS_REMOTE_READ

C 2011 OpenFabrics Alliance, Inc 13

RDMA_WRITE access rights

C 2011 OpenFabrics Alliance, Inc 14

SWR for RDMA_WRITE

•Differences from struct ibv_send_wr for SEND

–opcode is IBV_WR_RDMA_WRITE, not

IBV_WR_SEND

–lkey in SGE must have been created with access

IBV_ACCESS_REMOTE_READ

–Two more fields in struct ibv_send_wr must be

filled

•wr.rdma.remote_addr – remote side P's virtual

memory address

•wr.rdma.rkey – remote side P's rkey

•Remote memory on side P must be one

contiguous block (no scatter into remote memory)

C 2011 OpenFabrics Alliance, Inc 15

RDMA_READ operation

•Very different from “normal” socket operations

•Very different from Send/Recv

•Only one side is active, other side is passive

•Active side A calls ibv_post_send() – YES, SEND!!!

•Passive side B does NOTHING!! – completely passive

C 2011 OpenFabrics Alliance, Inc 16

RDMA_READ data flow

C 2011 OpenFabrics Alliance, Inc 17

RDMA_READ operation

•Active side A calls ibv_post_send() – YES, SEND!!!

•Passive side P does NOTHING!!!– completely passive

–Channel Adapters move data directly from passive side

P's virtual memory into active side A's virtual memory

–P does nothing – no ibv_post_recv() or

ibv_post_send()

–P sees nothing – no CPU cycles expended

–P receives no feedback – no events, no completions

•Transmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc 18

RDMA_READ data flow

C 2011 OpenFabrics Alliance, Inc 19

Prior to RDMA_READ

•Before active side A issues ibv_post_send() for

RDMA_READ, passive side P MUST inform side A

of side P's virtual memory location and rkey

•Passive side P must register its virtual memory for

IBV_ACCESS_REMOTE_READ

•Active side A must register its virtual memory for

IBV_ACCESS_LOCAL_WRITE and

IBV_ACCESS_REMOTE_WRITE

C 2011 OpenFabrics Alliance, Inc 20

RDMA_READ access rights

C 2011 OpenFabrics Alliance, Inc 21

SWR for RDMA_READ

•Differences from struct ibv_send_wr for RECV

–Do NOT use struct ibv_recv_wr

–opcode is IBV_WR_RDMA_READ

•(RECV did not need an opcode in struct

ibv_recv_wr)

–lkey in SGE must have been created with access

IBV_ACCESS_LOCAL_WRITE and

IBV_ACCESS_REMOTE_WRITE

–Two more fields in struct ibv_send_wr must be filled

•wr.rdma.remote_addr – remote side P's virtual

memory address

•wr.rdma.rkey – remote side P's rkey

C 2011 OpenFabrics Alliance, Inc 22

Summary of RDMA access rights

C 2011 OpenFabrics Alliance, Inc 23

Ping-Pong example rdma-1

•Client does all the work in the “ping-pong” loop

–Client does rdma_write on ping data

–Client does rdma_read on pong data

•Agent “sleeps” during “ping-pong” loop

–Agent's CPU utilization is 0

•Both need extra step before loop to exchange

buffer info

•Both need extra step after loop to synchronize

end-of-run

C 2011 OpenFabrics Alliance, Inc 24

Ping-pong using RDMA

C 2011 OpenFabrics Alliance, Inc 25

Ping buffers with access rights

C 2011 OpenFabrics Alliance, Inc 26

Set up client data buffers

•“ping-pong” client needs 2 user data buffers

–First contains original “ping” data

•Access rights IBV_ACCESS_REMOTE_READ

allow client to post RDMA_WRITE to agent

–Second gets reflected “pong” data

•Access rights both IBV_ACCESS_LOCAL_WRITE

and IBV_ACCESS_REMOTE_WRITE allow client to

post RDMA_READ from agent

C 2011 OpenFabrics Alliance, Inc 27

Client's data buffers,WRs and MRs

C 2011 OpenFabrics Alliance, Inc 28

Problems

•How does client get the agent's buffer location

and access rights key (so client can write-into and

read-from agent's buffer)?

•How does agent know when data transfer is

finished (during transfer the agent is completely

passive)?

C 2011 OpenFabrics Alliance, Inc 29

Solutions

•Agent must convey its buffer location and access

rights key to client prior to start of data transfer

–Accomplished via an exchange of messages

using send/recv called buffer-info exchange

•Client must convey an end-of-run indication to

agent after end of data transfer

–Accomplished via an exchange of messages

using send/recv called end-of-run ack exchange

C 2011 OpenFabrics Alliance, Inc 30

Structure of Client Use Phase

•buffer-info exchange

–performed using send/recv

•ping-pong data transfer loop

–performed using rdma_write and rdma_read

•end-of-run ack exchange

–performed using send/recv

C 2011 OpenFabrics Alliance, Inc 31

Set up client buffer_info exchange

•Client needs 2 new buffer_info buffers

–one to hold information on local data buffers

•In this demo, agent will not use this info

–other to hold information on remote data buffers

•In this demo, agent has only 1 buffer

•Client needs 2 new work requests

–one to send local buffer_info to agent

•In this demo, agent uses this message only for

synchronization

–other to recv remote buffer_info from agent

•In this demo, client must use this info in both the

C 2011 OpenFabrics Alliance, Inc 32

Client's local buffer_info send WR

C 2011 OpenFabrics Alliance, Inc 33

Client's remote buffer_info recv WR

C 2011 OpenFabrics Alliance, Inc 34

Exchange of info about buffers

C 2011 OpenFabrics Alliance, Inc 35

Set up end-of-run acks

•Needed because agent “sleeps” during data transfer

–Client sends ack containing number of transfers

finished

–Agent “wakes up” and sends reply ack to client

–Agent ends timings and starts break-down phase

•Client needs 2 new ack buffers

–one to hold final transfer count for sending to agent

–one to hold final ack for receiving from agent

•Client needs 2 new work requests

–one to send ack to agent

–other to recv ack back from agent

C 2011 OpenFabrics Alliance, Inc 36

Exchange of end-of-run acks

C 2011 OpenFabrics Alliance, Inc 37

Client's send ack work request

C 2011 OpenFabrics Alliance, Inc 38

Client's receive ack work request

C 2011 OpenFabrics Alliance, Inc 39

Structure of Client Use Phase

1.buffer-info exchange

performed using send/recv

1.ping-pong data transfer loop

performed using rdma_write and rdma_read

1.end-of-run ack exchange

performed using send/recv

C 2011 OpenFabrics Alliance, Inc 40

1. Client buffer_info exchange

•our_post_recv() to get agent's buffer_info

•our_post_send() to send client's buffer_info

–buffer_info must be sent in network byte order

•our_await_completion() for send

•our_await_completion() for recv

•Use agent's buffer_info to fill in client's work requests

–first WR for RDMA_WRITE “ping” data to agent

–second WR for RDMA_READ “pong” data from agent

–buffer_info received in network byte order

C 2011 OpenFabrics Alliance, Inc 41

Client buffer-info exchange code 1

/* post a receive to catch the remote agent's buffer info */

ret = our_post_recv(client_conn,

&client_conn->remote_buffer_info_work_request, options);

if (ret != 0) {

goto out0;

}

/* now we send our local buffer info to the remote agent */

ret = our_post_send(client_conn,

&client_conn->local_buffer_info_work_request, options);

if (ret != 0) {

goto out0;

}

C 2011 OpenFabrics Alliance, Inc 42

Client buffer-info exchange code 2

/* wait for the send local buffer info to complete */

ret = our_await_completion(client_conn, &work_completion, options);

if (ret != 0) {

goto out0;

}

/* wait for the recv remote buffer info to complete */

ret = our_await_completion(client_conn, &work_completion, options);

if (ret != 0) {

goto out0;

}

C 2011 OpenFabrics Alliance, Inc 43

Client buffer-info exchange code 3

/* use remote agent's buffer info to fill in

* rdma part of our RDMA_WRITE and RDMA_READ work requests

* to both point to the remote agent's single buffer

*/

client_conn->user_data_send_work_request[0].wr.rdma.remote_addr

= ntohll(client_conn->remote_buffer_info[0].addr);

client_conn->user_data_send_work_request[0].wr.rdma.rkey

= ntohl(client_conn->remote_buffer_info[0].rkey);

client_conn->user_data_send_work_request[1].wr.rdma.remote_addr

= ntohll(client_conn->remote_buffer_info[0].addr);

client_conn->user_data_send_work_request[1].wr.rdma.rkey

= ntohl(client_conn->remote_buffer_info[0].rkey);

C 2011 OpenFabrics Alliance, Inc 44

2. Synopsis of client's ping-pong loop

client_conn->wc_rdma_both = 0;

while (client_conn->wc_rdma_both < options->limit) {

call our_post_send() for RDMA_WRITE to agent

call our_await_completion()

call our_post_send() for RDMA_READ from agent

call our_await_completion()

client_conn->wc_rdma_both++

}

C 2011 OpenFabrics Alliance, Inc 45

3. Client's ack exchange

•our_post_recv() to catch agent's final ack

•fill in local ack with final count in network byte order

•our_post_send() to send ack with count to agent

•our_await_completion() for send

•our_await_completion() for recv

–Used for synchronization, contains no useful info

C 2011 OpenFabrics Alliance, Inc 46

Client's ack exchange code 1

/* post a receive to catch the remote agent's only ACK */

ret = our_post_recv(client_conn,

&client_conn->recv_ack_work_request, options);

if (ret != 0) {

goto out1;

}

/* tell the agent the number of iterations we finished */

client_conn->send_ack.ack_count = htonl(client_conn->wc_rdma_both);

/* now we send our only ACK to the remote agent */

ret = our_post_send(client_conn,

&client_conn->send_ack_work_request, options);

if (ret != 0) {

goto out1;

}

C 2011 OpenFabrics Alliance, Inc 47

Client's ack exchange code 2

/* wait for the send ACK to complete */

ret = our_await_completion(client_conn,&work_completion,options);

if (ret != 0) {

goto out1;

}

/* wait for agent's only ACK to complete */

ret = our_await_completion(client_conn,&work_completion,options);

if (ret != 0) {

/* hit error or FLUSH_ERR, in either case leave now */

goto out1;

}

C 2011 OpenFabrics Alliance, Inc 48

Example ping-rdma-1

•Run ping-rdma-1

•Client drives all data transfers

•Agent completely passive during data transfer

–CPU usage is 0

•Walk through client code as necessary

C 2011 OpenFabrics Alliance, Inc 49

Set up agent data buffers

•“ping-pong” agent needs 1 user data buffer

–Agent issues no operations on it

–Client issues RDMA_WRITE and RDMA_READ on

it

–Access rights IBV_ACCESS_LOCAL_WRITE,

IBV_ACCESS_REMOTE_WRITE and

IBV_ACCESS_REMOTE_READ

C 2011 OpenFabrics Alliance, Inc 50

Ping buffers with access rights

C 2011 OpenFabrics Alliance, Inc 51

Agent's data buffer setup

C 2011 OpenFabrics Alliance, Inc 52

Structure of Agent Use Phase

•buffer-info exchange

–performed using recv/send

•ping-pong data transfer loop

–do nothing! - client does all the work

•end-of-run ack exchange

–performed using recv/send

C 2011 OpenFabrics Alliance, Inc 53

Set up agent buffer_info exchange

•Agent needs 2 new buffer_info buffers

–One to hold information on all local data buffers

•In this demo, agent has only 1 data buffer

–One to hold information on all remote data buffers

•In this demo, agent will not use this info

•Agent needs 2 new work requests

–One to send local buffer_info to client

–One to recv remote buffer_info from client

•In this demo, agent will not use this info

C 2011 OpenFabrics Alliance, Inc 54

Set up end-of-run acks

•Agent needs 2 new ack buffers

–one to hold final transfer count to receive from

client

–other to hold final ack to send to client

•Agent needs 2 new work requests

–one to recv ack from client

–other to send ack back to client

C 2011 OpenFabrics Alliance, Inc 55

Agent buffer_info exchange

•our_post_recv() to get client's buffer_info

–Needed for synchronization, info not used by

agent

•our_post_recv() to get client's end-of-run ack

•our_await_completion() for first recv

•our_post_send() to send agent's buffer_info

•our_await_completion() for send

C 2011 OpenFabrics Alliance, Inc 56

Synopsis of agent's ping-pong loop

Nothing to do!!! Completely passive

C 2011 OpenFabrics Alliance, Inc 57

Agent's ack exchange

•our_await_completion() for client's ack with count

•convert final count from network byte order

•our_post_send() to send final ack to client

•our_await_completion() for send

C 2011 OpenFabrics Alliance, Inc 58

Example ping-rdma-1

•Walk through agent code as necessary

C 2011 OpenFabrics Alliance, Inc 59

Ping-Pong exercise ping-rdma-1e

•Opposite of previous example

•Server now does all the work

–Server does rdma_read on ping data

–Server does rdma_write on pong data

•Client does nothing – CPU utilization is 0

•Exercise for reader during labs

C 2011 OpenFabrics Alliance, Inc 60

Server drives all data transfers

C 2011 OpenFabrics Alliance, Inc 61

Another look at ping-rdma-1

C 2011 OpenFabrics Alliance, Inc 62

How to improve performance

•In everything done so far, all work requests (WRs)

submitted to a send or receive queue have resulted

in a work completion (WC) being generated in a

completion queue (CQ)

•RDMA specifications require this for all receive

work requests (RWRs), but not for all send work

requests (SWRs) – the user can control this

•We have been requesting this for all our SWRs in

our_setup_send_wr() by setting the value of the

send_flag field in struct ibv_send_wr to

IBV_SEND_SIGNALED

C 2011 OpenFabrics Alliance, Inc 63

Unsignaled send work requests

•If we set the send_flag field in struct ibv_send_wr

to 0, no WC is generated in the corresponding CQ if

that SWR completes successfully (a WC is always

generated on any error processing a posted WR)

•A SWR with send_flag value of 0 is called an

unsignaled work request

•So how does a user know when an unsignaled work

request completes successfully?

C 2011 OpenFabrics Alliance, Inc 64

Unsignaled work request completion

•An unsignaled WR completes successfully when:

–A WC for a subsequent WR is retrieved from the

CQ associated with the SQ where the unsignaled

WR was posted

–And that subsequent WR was posted on the same

SQ as the unsignaled WR

–And that subsequent WR is ordered after the

unsignaled WR

•Only then can resources associated with the

unsignaled WR be reused

C 2011 OpenFabrics Alliance, Inc 65

Ordering rules

•The rules for processing WRs and WCs allow for

flexibility in actual implementations

•WRs submitted to a single SQ must be initiated,

sent and completed in the order they are submitted

•However, processing of the data transfers from

multiple WRs submitted to the same SQ can be

done in parallel – in particular, data may be placed

into target memory in any order

C 2011 OpenFabrics Alliance, Inc 66

Ordering rules continued

•If different messages, or parts of the same

message, being processed in parallel refer to the

same or overlapping buffers, then it is possible that

the last incoming write will not be the last outgoing

data sent

•For an RDMA_WRITE, the contents of the target

buffer are indeterminate until a subsequent Send

message is completed by consuming a WC at the

target (e.g., an ACK is sent back and completes at

the target)

C 2011 OpenFabrics Alliance, Inc 67

Special ordering rules

•When a user submits to the same SQ a SWR for

RDMA_WRITE followed by a SWR for

RDMA_READ targeting the same remote buffer

(which is what we are doing in this demo), the

RDMA_READ must return the data as modified by

the RDMA_WRITE

•This is always true, whether or not the

RDMA_WRITE SWR is signaled or unsignaled

C 2011 OpenFabrics Alliance, Inc 68

Benefiting from these rules

•In this demo we submit to the same SQ a SWR

for RDMA_WRITE followed by a SWR for

RDMA_READ both targeting the same buffer

•Therefore, the RDMA_WRITE SWR can be

unsignaled (i.e., it generates no WC) because the

WC generated by the SWR for RDMA_READ

guarantees that the SWR for RDMA_WRITE

completed successfully prior to the RDMA_READ

SWR completion

C 2011 OpenFabrics Alliance, Inc 69

Revised client ping-pong loop

/* turn off SIGNALED flag on RDMA_WRITE */

client_conn->user_data_send_work_request.send_flags

&= ~IBV_SEND_SIGNALED;

client_conn->wc_rdma_both = 0;

while (client_conn->wc_rdma_both < options->limit) {

call our_post_send() for RDMA_WRITE to agent

/***** do NOT call our_await_completion() *****/

call our_post_send() for RDMA_READ from agent

call our_await_completion()

client_conn->wc_rdma_both++;

}

C 2011 OpenFabrics Alliance, Inc 70

Ping-pong example ping-rdma-2

•Run it and compare round-trip time with previous

demo

•Diff the client.c files to show how minor the

differences are

•Walk the code as necessary

C 2011 OpenFabrics Alliance, Inc 71

Ping-Pong using only RDMA_WRITE

•Use RDMA_WRITE on both client and agent

–Client does rdma_write of ping data

–Agent does rdma_write of pong data

•Problem – how does each side know when it is its

turn to act?

•Solutions

–Exchange acks using send/recv

•Client sends ack after it completes its rdma_write

•Agent sends ack after it completes its rdma_write

–Use memory patterns with no acks exchanged

C 2011 OpenFabrics Alliance, Inc 72

Using RDMA_WRITE with ack

C 2011 OpenFabrics Alliance, Inc 73

Using RDMA_WRITE without ack

C 2011 OpenFabrics Alliance, Inc 74

Ping using RDMA_WRITE with ack

•Use RDMA_WRITE followed by an ack

–Client does rdma_write to deliver ping data to

agent

–Client sends ack to agent

–Agent receives ack from client

–Agent does rdma_write to deliver pong data to

client

–Agent sends ack to client

–Client receives ack from agent

C 2011 OpenFabrics Alliance, Inc 75

Performance issues

•Following each RDMA_WRITE with a send of an

ack effectively doubles the time to do a ping, and

doubles the time to do a pong

•Might as well just do a send of the ping data and a

send of the pong data (as we did in earlier demos)

•How can we avoid the “extra” ack sends?

C 2011 OpenFabrics Alliance, Inc 76

Token Passing

•These acks effectively “pass the token” from

current writer to next writer

1.Client starts with token

2.Client does rdma_write to agent

3.Client passes token to agent (sends ack)

4.Agent gets the token (receives ack)

5.Agent does rdma_write to client

6.Agent passes token to client (sends ack)

7.Client gets token from agent (receives ack)

8.Loop to step 2

C 2011 OpenFabrics Alliance, Inc 77

Using the Data as the Token

•Instead of passing the token separately from data, use the

data as the token

–That's how it worked with Send/Recv!!

•Requires the side receiving the data to somehow

recognize that it has ALL arrived

•Simple way – detect a change in buffer contents

–Requires busy waiting on the data buffer

–Must be sure ENTIRE buffer has been changed

•One possible technique

–Fill receive buffer with character not in data

–Busy wait until character is nowhere in buffer

C 2011 OpenFabrics Alliance, Inc 78

Ping-Pong example ping-rdma-3

•Use RDMA_WRITE without ack

•Client needs 2 buffers (as before)

•Agent also needs 2 buffers (before had only 1)

–Client does rdma_write into agent's ping buffer

–Agent copies data from ping buffer to pong buffer

–Agent does rdma_write from pong buffer to client

•Each side needs to detect arrival of ALL data from other side

•Done by busy waiting for change in contents of ENTIRE

receive buffer

C 2011 OpenFabrics Alliance, Inc 79

Data flow in ping-rdma-3

C 2011 OpenFabrics Alliance, Inc 80

Client buffers and pattern use

1.Client fills ping buffer with data pattern containing only

printable characters

2.Client fills pong buffer with different pattern containing all

binary zeroes ('\0' character)

3.Client does RDMA_WRITE of ping data to agent

4.Client waits for RDMA_WRITE to complete

5.Client busy waits until all binary zeroes in pong buffer have

been completely replaced

6.Client optionally verifies data in pong buffer

7.Client loops to step 2

C 2011 OpenFabrics Alliance, Inc 81

Agent buffers and pattern use

1.Agent fills ping buffer with pattern containing all

binary zeroes ('\0' character)

2.Agent busy waits until all binary zeros in ping buffer

have been completely replaced

3.Agent copies ping buffer into pong buffer

4.Agent fills ping buffer with pattern containing all

binary zeroes ('\0' character)

5.Agent does RDMA_WRITE of pong data to client

6.Agent waits for RDMA_WRITE to complete

7.Agent loops to step 2

C 2011 OpenFabrics Alliance, Inc 82

Example ping-rdma-3

•Both sides take turns doing RDMA_WRITE

•User data is the token

•Each side busy waits on data buffer to detect token

•No extra ack messages are necessary

•Run demo

•Walk code as necessary

C 2011 OpenFabrics Alliance, Inc 83

Ping-Pong using only RDMA_READ

•Use RDMA_READ on both client and server

–Server does rdma_read to get ping data from

client

–Client does rdma_read to get pong data from

server

•Problem – same as before – how to know when

it's “your turn” to ack

•Solution with acks to pass token

–Exercise for reader

•Solution without acks – is it possible?

–Challenge for reader to prove or disprove this

C 2011 OpenFabrics Alliance, Inc 84

Using only RDMA_READ with ack

C 2011 OpenFabrics Alliance, Inc 85

Ping using RDMA_READ with ack

•Use RDMA_READ with acks

–Agent does rdma_read to get ping data from

client

–Agent sends ack to client

–Client receives ack from agent

–Client does rdma_read to get pong data from

agent

–Client sends ack to agent

–Agent receives ack from client

C 2011 OpenFabrics Alliance, Inc 86

Blast using only RDMA_WRITE

•Change our attention from ping-pong to blast

•Client uses chained work requests to blast as

much data as possible to agent

•Agent does nothing

–CPU utilization is 0

•Client does everything

–Uses rdma_write with chain of all available SWRs

–For large enough message sizes, throughput is

near maximum bandwidth available to user

payload (i.e., after accounting for protocol headers,

etc.)

C 2011 OpenFabrics Alliance, Inc 87

Blast Buffers

•Arbitrary number of buffers in both client and agent

•Buffers are written by client to agent using chained

work requests

•Buffers are reused on both sides

•Client does not synchronize buffer use by agent

•Need same organization of Use Phase

–Perform buffer_info exchange using send/recv

–Client blasts data using RDMA_WRITE

–Perform end-of-run ack exchange using send/recv

C 2011 OpenFabrics Alliance, Inc 88

Client drives blasting

C 2011 OpenFabrics Alliance, Inc 89

Blast example blast-rdma-1

•Client uses chained work requests to blast as

much data as possible to agent with one

ibv_post_send()

•Agent does nothing

–CPU utilization is 0

•Client does everything

–Uses rdma_write with chain of all available SWRs

•Run demo

•Walk code as necessary

C 2011 OpenFabrics Alliance, Inc 90

Blast with agent doing all work

•Agent uses chained work requests to blast as

much data as possible from client

•Client does nothing

–CPU utilization is 0

•Agent does everything

–Uses rdma_read with chain of all available SWRs

•In Lab, exercise for reader

C 2011 OpenFabrics Alliance, Inc 91

Agent drives blasting

C 2011 OpenFabrics Alliance, Inc 92

Persistent access

•RDMA_WRITE and RDMA_READ are both “one-

sided”

–Side issuing the RDMA_WRITE or RDMA_READ

is active – it does all the work

–Other side is passive – it does nothing

•Leads to idea of persistent access

–Passive side gives access permission to active

side only once

–Active side can issue RDMA_WRITE or

RDMA_READ repeatedly to same memory region

on passive side

C 2011 OpenFabrics Alliance, Inc 93

Publish-Subscribe data flow

C 2011 OpenFabrics Alliance, Inc 94

Publish-subscribe pub-sub-rdma-1

•Publisher (server) is passive side (issues no I/O)

–Periodically updates its local data repository

•Subscriber (client) is active side

–Periodically does RDMA_READ from server into

local buffer

•Question – how does subscriber know ALL data in

its local buffer is valid?

C 2011 OpenFabrics Alliance, Inc 95

Data flow in pub-sub-rdma-1

C 2011 OpenFabrics Alliance, Inc 96

Data Integrity in persistent access

•Problem caused by changes to block of virtual

memory while it is being transferred onto wire

–data transmitted may be only partially changed

•Solutions

–For single “words”, memory hardware solves it

–For small blocks, could transmit them twice

•Receiving side compares the blocks

•Uses them only if both equal

•Rereads if both not equal

•Depends on speed of update and speed of transfer

–Safer to compute and include CRC in the transfer

C 2011 OpenFabrics Alliance, Inc 97

Data Integrity using CRC

•Include CRC as part of data repository

•To update local data repository, publisher must

1.Change data in repository (thereby invalidating CRC)

2.Compute new CRC on updated repository into a temp

3.Store temp into CRC slot in local data repository

•To verify integrity of its local buffer, subscriber must

1.RDMA_READ repository from server into local buffer

2.Compute CRC on local buffer

3.If CRC checks ok, use this buffer

4.If CRC is bad, repeat at step 1 (because

RDMA_READ was done while server was updating its

memory)

C 2011 OpenFabrics Alliance, Inc 98

Publish-Subscribe pub-sub-rdma-2

•Server (publisher) is active side

–Periodically updates its local data repository

–After each update, server does RDMA_WRITE to

remote buffer in client

•Client (subscriber) is passive side (issues no I/O)

–Periodically looks at its local buffer

•Question – as before – how does subscriber know

ALL the data in its local buffer is valid?

C 2011 OpenFabrics Alliance, Inc 99

Data flow in pub-sub-rdma-2

C 2011 OpenFabrics Alliance, Inc 100

Adding CRC to pub-sub-rdma-2

•Before doing RDMA_WRITE of its data to client,

server must compute CRC of all data and include that

in repository data written to client

•To verify integrity of its local repository, client must

do:

1.Copy area written by server into another buffer

2.Compute CRC on that buffer

3.If CRC checks ok, use that buffer

4.If CRC is bad, repeat at step 1 (because copy was

made while server was transferring new data)

C 2011 OpenFabrics Alliance, Inc 101

Exercise pub-sub-rdma-2e

•Client (publisher) is active side

–Periodically updates its local data repository

–After each update, client does RDMA_WRITE to

remote buffer in agent

•Agent (subscriber) is passive side (issues no I/O)

–Periodically looks at its local buffer

•Question – as before – how does subscriber know

ALL the data in its local buffer is valid?

•Exercise for the reader in lab

C 2011 OpenFabrics Alliance, Inc 102

Data flow in pub-sub-rdma-2e

C 2011 OpenFabrics Alliance, Inc 103

Unreliable Datagram (UD)

Mode

•Implemented only on IB, not iWARP

•Port space parameter to rdma_create_id has value

RDMA_PS_UDP

•Can only use Send/Recv, not RDMA_WRITE or RDMA_READ

–Both sides must actively participate in transfer

–One side does ibv_post_recv(), other ibv_post_send()

•Transmission is still in messages, not streams

•Messages can be lost, since route not resolved in advance

•Message size limited to link MTU of underlying technology

C 2011 OpenFabrics Alliance, Inc 104

Multicast

•Only possible with IB, not iWARP

•Is optional to implement in IB

•Only possible in Unreliable Datagram (UD) mode

–Only Send/Recv operations allowed

–Both sides must actively participate in data transfers

•Allows single SEND to be delivered to RECV in

multiple destinations

•Receiver must have RECV posted for next Send

•Receiver must process each RECV completion

C 2011 OpenFabrics Alliance, Inc 105

Multicast-Publish-Subscribe

•Active processing of updates on both sides

•Server establishes multicast group

•Server maintains data repository, periodically

updates and sends it to multicast group

•Clients join multicast group

•Clients need 2 outstanding ibv_post_recv()

•When client ibv_post_recv() completes

–client posts another to receive in second buffer

–then uses the data from first buffer

•Clients can leave multicast group at any time

C 2011 OpenFabrics Alliance, Inc 106

Ping-Pong example ping-sr-4

•Set both cm event channel and completion

channel into O_NONBLOCK mode

•Use POSIX poll() to wait for both cm events and

completion events

•Closest in style to “normal” sockets synchronous

programming

•No need for extra thread

•Run

•Walk the code

C 2011 OpenFabrics Alliance, Inc 107

End of Part 2

