Writing Application Programs for
RDMA using OFA Software
Part 3

Open Fabrics Alliance

C 2011 OpenFabrics Alliance, Inc

Copyright Statement

Copyright (C) 2016 OpenFabrics Alliance
Permission Is granted to copy, distribute and/or
modify this document under the terms of the
GNU Free Documentation License, Version 1.3
or any later version published by the Free
Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section
entitled "GNU Free Documentation License".

The license itself is at
https://www.gnu.org/licenses/fdl-1.3.en.html.

https://www.gnu.org/licenses/fdl-1.3.en.html

ap

recwv_cq

1 send_cq

send_cq_channel

1

recw_cc_channel

— Ccontext

chanmel

rdma_ewvent_channel

Ibv context

F— ops —

Ibv_ context ops

Yv v

i

send_cq

pd
ibv__comp
] Cq f— chanmnel —j»] - f— context —jm
Ibv_ channel
context
w
context
context
Ibwv__pd

pd

dewice

addr user virtual

Ibwv_devwvice

.—gpﬁ—-.

Ibwv_dewvice__ops

Ibv_send_wr

memaory
A A
addr addr
| |
— sg_liste| lbv_sge Ibw__sge

Mext

e sg_ list

Ibv_send_wr

| next

MNexxt

Data Structures Pyramid &)

——_ —_— e — —

— ————— —
lbv_send_wr

Transfer lbv_sge
Posting lbv_recv_wr

lbv_qp
lbv_qp_init attr

Transfer lbv_cq

Completion Ibv_wc
Ibv_comp_channel

Memory lbv_pd
Registration lov_mr

rdma_cm_id
Connection rdma_conn_param

Management rdma_cm_event
rdma event channel

Ibv_context
Misc Ibv_device
ibv_device attr

C 2011 OpenFabrics Alliance, Inc 4

Transfer lbv_post send
Ibv_post_recv

Posting rdma_create_gp rdma_destroy_gp

ibv_create_cq lbv_poll_cq ibv_destroy_cp
lbv_wc status str
ibv_create_comp_channel lbv_req_notify cq ibv_destroy_comp_channel

Ibv_get_cq_event
Ibv_ack_cq_events

Memory lov_alloc_pd Ibv_dealloc_pd
Registration Ibv_reg_mr lbv_dereg_mr

rdma_create id rdma_resolve_addr rdma_destroy id
rdma_resolve route
rdma_connect
rdma_disconnect
rdma_bind_addr
rdma_listen
Connection rdma_get_cm_event
Management rdma_ack_cm_event

rdma_event_str
rdma_accept
rdma_reject
rdma_create_event channel rdma_migrate id rdma_destroy event channel
rdma_get local_addr
rdma_get_peer_addr

Transfer
Completion

rdma_get_devices
Misc rdma_free_devices
rdma_query devices

Setup Use Break-Down

C 2011 OpenFabrics Alliance, Inc 5

RDMA_ WRITE operation &)

—— e

*Very different from "normal” socket operations

*Very different from Send/Recv

*Only one side Is active, other side Is passive

*Active side A calls ibv_post _send()

*Passive side P does NOTHING!! — completely passive

C 2011 OpenFabrics Alliance, Inc

RDMA_ WRITE data flow (%

e —

ibv_post_send()
RDMA_WRITE

C 2011 OpenFabrics Alliance, Inc

RDMA_ WRITE operation

== — ———— ——

*Active side A calls ibv_post _send()
‘Passive side P does NOTHING!! — completely passive

—Channel Adapters move data directly from active side
A's virtual memory into passive side P's virtual memory

—P does nothing — no ibv_post_recv(),
Ibv_post_send()

—P sees nothing — no CPU cycles expended
—P receives no feedback — no events, no completions

*Transmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc

RDMA_ WRITE data flow (%

e —

ibv_post_send()
RDMA_WRITE

Active Passive
A P

C 2011 OpenFabrics Alliance, Inc

Differences with Send/Recv %

ALLIANCE

— =~ = — —

S— _— S e e

*Local active side A that calls ibv_post _send()
MUST know virtual memory location on remote
passive side P

*Passive side P knows nothing about virtual memory
location on active side A

*Passive side P does NOT call ibv_post recv() to
match active side A's ibv_post_send()

*Prior to the transfer, side P must inform side A of its
virtual memory location and its rkey

C 2011 OpenFabrics Alliance, Inc

Similarities with Send/Recv (5)

——— . — ——

*Both types of transfer are unbuffered

*Both types of transfer require virtual memory on
each side to be registered by that side

*Both types of transfer operate asynchronously
*Both types of transfer use same.:

—work request list and scatter-gather list structures
—completion queues and completion events
—connection management operations and events
—verbs and data structures

C 2011 OpenFabrics Alliance, Inc

Prior to RDMA WRITE

Before active side A issues ibv_post_send() for

RDMA_ WRITE, side P MUST inform side A of side
P's virtual memory location and rkey

‘Passive side P must register its virtual memory for
both IBV_ACCESS LOCAL WRITE and
IBV_ACCESS REMOTE WRITE

*Active side A must register its virtual memory for
IBV_ACCESS REMOTE_READ

C 2011 OpenFabrics Alliance, Inc

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_READ IBV_ACCESS_REMOTE_WRITE

ibv_post_send)
RDMA_WRITE

Actwe Paﬁswe

C 2011 OpenFabrics Alliance, Inc 13

SWR for RDMA_WRITE

= ——————— — ———

Differences from struct ibv_send wr for SEND

—opcode is IBV_WR_RDMA WRITE, not
IBV_WR_SEND

—lkey in SGE must have been created with access
IBV_ACCESS REMOTE_ READ

—Two more fields in struct ibv_send_ wr must be
filled

‘wr.rdma.remote_addr — remote side P's virtual
memory address

‘wr.rdma.rkey — remote side P's rkey

ALLIANCE

RDMA READ operation

e

*Very different from “normal” socket operations

*Very different from Send/Recv

*Only one side Is active, other side Is passive

*Active side A calls ibv_post send() — YES, SEND!!!
‘Passive side B does NOTHING!! — completely passive

C 2011 OpenFabrics Alliance, Inc

RDMA_ READ data flow (%

e ——

ibv_post_send|()
RDMA_READ

C 2011 OpenFabrics Alliance, Inc

RDMA READ operatlon

Active side A calls ibv_post send() YES, SEND!!!
*Passive side P does NOTHING!!I- completely passive

—Channel Adapters move data directly from passive side
P's virtual memory into active side A's virtual memory

—P does nothing — no ibv_post_recv() or
Ibv_post_send()

—P sees nothing — no CPU cycles expended
—P receives no feedback — no events, no completions

*Transmits messages only, no streams

C 2011 OpenFabrics Alliance, Inc

RDMA READ data flow (%

e ——

ibv_post_send()
RDMA_READ

Active Passive
A P

C 2011 OpenFabrics Alliance, Inc

Prior to RDMA_READ

— ~ — — e

—= e ———— — —

Before active side A issues ibv_post_send() for
RDMA _READ, passive side P MUST inform side A
of side P's virtual memory location and rkey

*Passive side P must register its virtual memory for
IBV_ACCESS_REMOTE_READ

*Active side A must register its virtual memory for
IBV_ACCESS LOCAL WRITE and
IBV_ACCESS REMOTE WRITE

C 2011 OpenFabrics Alliance, Inc

RDMA_READ access rights

e

IBV_ACCESS_LOCAL_WRITE

IBV_ACCESS_REMOTE_WRITE IBV_ACCESS_REMOTE_READ

ibv_post_send)
RDMA_READ

Active Passive
A P

C 2011 OpenFabrics Alliance, Inc 20

ALLIANCE

SWR for RDMA READ &9}

— —

— = — —- — ————

Differences from struct ibv_send wr for RECV
—Do NOT use struct ibv_recv_wr

—opcode is IBV_WR_ RDMA READ

*(RECV did not need an opcode in struct
Ibv_recv_wr)

—lkey in SGE must have been created with access

IBV._ACCESS LOCAL WRITE and
IBV_ACCESS REMOTE_WRITE

—Two more fields in struct ibv_send_ wr must be filled
‘wr.rdma.remote addr — remote side P's virtual

Summary of RDMA access rights &)

IBV_ACCESS_REMOTE_READ

ibv_post_send()
RDMA_WRITE

ALLIANCE

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

Active

C 2011 OpenFabrics Alliance, Inc

RDMA_READ

IBV_ACCESS_REMOTE_READ

Passive
P

22

" 4 -
| “
.

OPENFABRICS

ALLIANCE

Ping-Pong example rdma-1

——

= =~ = — —

Client does all the work in the “ping-pong” loop
—Client does rdma_write on ping data

—Client does rdma_read on pong data

*Agent “sleeps” during “ping-pong” loop
—Agent's CPU utilization is O

*Both need extra step before loop to exchange
buffer info

*Both need extra step after loop to synchronize
end-of-run

C 2011 OpenFabrics Alliance, Inc

Client Agent

Loop

Loop

Data

l Y
24

C 2011 OpenFabrics Alliance, Inc

Ping buffers with access rights &)

ALLIANCE

Client Server
Agent

IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

Al
t_se"
ang::__ﬂﬁp‘n Passive
Pong > P
Data
Active
A

C 2011 OpenFabrics Alliance, Inc

Set up client data buffers

— — ~ ~ — ——

*“ping-pong” client needs 2 user data buffers

—First contains original “ping” data

*Access rights IBV_ACCESS REMOTE_READ
allow client to post RDMA_WRITE to agent

—Second gets reflected “pong” data

*Access rights both IBV_ACCESS LOCAL WRITE
and IBV_ACCESS REMOTE_ WRITE allow client to
post RDMA_ READ from agent

C 2011 OpenFabrics Alliance, Inc

user_data_send_work_request

0 IBV_WR_RDMA_WRITE

1 IBV_WR_RDMA_READ
user_data_sge user_data_mr
0 0 | IBV_ACCESS_REMOTE_READ

lkey1
Ikey1
rkey1

1 1 | 1IBV_ACCESS_LOCAL_WRITE
. IBV_ACCESS_REMOTE_WRITE

Ikey2

lkey2

rkey2

user_data

o

-
—

C 2011 OpenFabrics Alliance, Inc

Problems

ALLIANCE

— —— = — -

S —— —_—

*How does client get the agent's buffer location
and access rights key (so client can write-into and
read-from agent's buffer)?

How does agent know when data transfer Is
finished (during transfer the agent is completely
passive)?

C 2011 OpenFabrics Alliance, Inc

Solutions

 —— a e —— —

*Agent must convey its buffer location and access
rights key to client prior to start of data transfer

—Accomplished via an exchange of messages
using send/recv called buffer-info exchange

Client must convey an end-of-run indication to
agent after end of data transfer

—Accomplished via an exchange of messages
using send/recv called end-of-run ack exchange

C 2011 OpenFabrics Alliance, Inc

buffer-info exchange

—performed using send/recv

*ping-pong data transfer loop

—performed using rdma_write and rdma_read
end-of-run ack exchange

—performed using send/recv

C 2011 OpenFabrics Alliance, Inc

Set up client buffer_info exchange 55

ALLIANCE

— < - — — =

e — e =

Client needs 2 new buffer_info buffers

—one to hold information on local data buffers

*In this demo, agent will not use this info

—other to hold information on remote data buffers
*In this demo, agent has only 1 buffer

Client needs 2 new work requests

—one to send local buffer_info to agent

*In this demo, agent uses this message only for
synchronization

—other to recv remote buffer info from agent

C 2011 OpenFabrics Alliance, Inc

I OAAMO CliIeant MiQr 1 1A

Client's local buffer info send WR &)

- —_——

—

local_buffer_info_work_request

IBV. WR_SEND

= local_buffer_info_sge local_buffer_info_mr
o
Ikey3
Ikey3 o e¥:3

local_buffer_info

rkey1

C 2011 OpenFabrics Alliance, Inc

Client's remote buffer info recv WR

remote_buffer_info_work_request

remote_buffer_info_sge

Ikey4

remote_buffer_info_mr

IBV_ACCESS_LOCAL_WRITE
lkey4
rkey4
remote_buffer_info
-

C 2011 OpenFabrics Alliance, Inc

PENFABRICS

0

ALLIANCE

33

Exchange of info about buffers &j

ALLIANCE

Clignt Server

0 IBV_ACCESS_LOCAL_WRITE

local_buffer_info remote_buffer_info

Send Recv

IBV_ACCESS_LOCAL_WRITE 0
remote_buffer_info local_buffer_info
Info Info
about Recv Send about
-
remote local
buffers buffers

C 2011 OpenFabrics Alliance, Inc

Set up end-of-run acks

. — — =

e — e =

*‘Needed because agent “sleeps” during data transfer

—Client sends ack containing number of transfers
finished

—Agent “wakes up” and sends reply ack to client
—Agent ends timings and starts break-down phase
Client needs 2 new ack buffers

—one to hold final transfer count for sending to agent
—one to hold final ack for receiving from agent
Client needs 2 new work requests

—one to send ack to agent

C 2011 OpenFabrics Alliance, Inc
~thAr FtA racvs ~an~nl, IhAaAnl, FrarmAa A~nAnd

Exchange of end-of-run acks &)

- - —_—

—

Clignt Server

0 IBV_ACCESS_LOCAL_WRITE

send_ack recv_ack

Send Recv

IBV_ACCESS_LOCAL_WRITE 0
recv_ack send_ack
Ack Ack
for Recv Send for
final . final
synch synch

C 2011 OpenFabrics Alliance, Inc 36

Client's send ack work request &)

send_ack_work_request

IBV_WR_SEND

- send_ack_sge send_ack_mr
0
lkeysa lkeysa
rkeysa
send_ack
ack.count

C 2011 OpenFabrics Alliance, Inc

Client's receilve ack work request

recv_ack_work_request

recv_ack_sge

lkeyra

recv_ack

recv_ack_mr

IBV_ACCESS_LOCAL_WRITE

lkeyra
rkeyra

C 2011 OpenFabrics Alliance, Inc

38

1.buffer-info exchange

performed using send/recv
1.ping-pong data transfer loop

performed using rdma_write and rdma_read
1.end-of-run ack exchange

performed using send/recv

C 2011 OpenFabrics Alliance, Inc

1. Client buffer_info exchange

= = —_— — —

*our_post_recv() to get agent's buffer_info
*our_post_send() to send client's buffer_info
—buffer_info must be sent in network byte order
our_await_completion() for send
*our_await_completion() for recv

*Use agent's buffer_info to fill in client's work requests
—first WR for RDMA_WRITE “ping” data to agent
—second WR for RDMA_READ “pong” data from agent
—buffer_info received in network byte order

C 2011 OpenFabrics Alliance, Inc

Client buffer-info exchange code 1 &

OPENFABRICS

ALLIANCE

——————

[* post a receive to catch the remote agent's buffer info */
ret = our_post_recv(client_conn,
&client_conn->remote_buffer_info_work_request, options);
If (ret!'=0) {
goto outO;
¥

/* now we send our local buffer info to the remote agent */
ret = our_post_send(client_conn,
&client_conn->local_buffer_info_work_request, options);
If (ret!1=0) {
goto outO;

}

C 2011 OpenFabrics Alliance, Inc 41

Client buffer-info exchange code 2 &)

ALLIANCE

/* wait for the send local buffer info to complete */
ret = our_await_completion(client_conn, &work_completion, options);
If (ret1=0) {
goto outO;
¥

/* wait for the recv remote buffer info to complete */
ret = our_await_completion(client_conn, &work _completion, options);
if (ret!'=0) {
goto outO;
¥

C 2011 OpenFabrics Alliance, Inc 42

Client buffer-info exchange code 3

ALLIANCE

— e

/[* use remote agent's buffer info to fill in
* rdma part of our RDMA_WRITE and RDMA_READ work requests
* to both point to the remote agent's single buffer
*/
client_conn->user_data_send_work_request[0].wr.rdma.remote_addr
= ntohll(client_conn->remote_buffer_info[0].addr);
client_conn->user_data_send_work_request[0].wr.rdma.rkey
= ntohl(client_conn->remote_buffer _info[0].rkey);
client_conn->user_data send work_request[1].wr.rdma.remote_addr
= ntohll(client_conn->remote_buffer_info[0].addr);
client_conn->user_data_send_work_request[1].wr.rdma.rkey
= ntohl(client_conn->remote_buffer_info[0].rkey);

C 2011 OpenFabrics Alliance, Inc

PENFABRICS
LLIANCE

2. Synopsis of client's ping-pong loop 0&)

————

S —— e

client_conn->wc_rdma_both = 0O;

while (client_conn->wc_rdma_both < options->limit) {
call our_post_send() for RDMA_ WRITE to agent
call our_await_completion()
call our_post_send() for RDMA READ from agent
call our_await_completion()
client_conn->wc_rdma_both++

C 2011 OpenFabrics Alliance, Inc 44

= —— ———

*our_post_recv() to catch agent's final ack

fill in local ack with final count in network byte order
our_post_send() to send ack with count to agent
our_await_completion() for send
*our_await_completion() for recv

—Used for synchronization, contains no useful info

C 2011 OpenFabrics Alliance, Inc

Client's ack exchange code 1 &3

e — —

/* post a receive to catch the remote agent's only;A\CfK */
ret = our_post_recv(client_conn,
&client_conn->recv_ack work request, options);

If (ret!'=0) {
goto outl;
¥

[* tell the agent the number of iterations we finished */
client_conn->send_ack.ack count = htonl(client_conn->wc_rdma_both);

/* now we send our only ACK to the remote agent */
ret = our_post_send(client_conn,
&client_conn->send_ack_work_request, options);
If (ret!1=0){
goto outl;
¥

C 2011 OpenFabrics Alliance, Inc 46

Client's ack exchange code 2 &

—— —

[* wait for the send ACK to complete */
ret = our_await_completion(client_conn,&work completion,options);
if (ret!'=0) {
goto outl;
s

[* wait for agent's only ACK to complete */
ret = our_await_completion(client_conn,&work completion,options);
If (ret1=0) {

[* hit error or FLUSH_ERR, in either case leave now */

goto outl;

}

C 2011 OpenFabrics Alliance, Inc 47

Example ping-rdma-1 (Q)

——————
— e

*Run ping-rdma-1

Client drives all data transfers

*Agent completely passive during data transfer
—CPU usage is 0

*Walk through client code as necessary

C 2011 OpenFabrics Alliance, Inc

Set up agent data buffers

— e

— = = = 7>777' - . R— j '_"/7

*“ping-pong” agent needs 1 user data buffer
—Agent issues no operations on it
—Client issues RDMA WRITE and RDMA_READ on

It

—Access rights IBV_ACCESS LOCAL_WRITE,
IBV_ACCESS REMOTE WRITE and
IBV_ACCESS REMOTE_READ

C 2011 OpenFabrics Alliance, Inc

Ping buffers with access rights &)

ALLIANCE

Client Server
Agent

IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE

Al
t_se"
ang::__ﬂﬁp‘n Passive
Pong > P
Data
Active
A

C 2011 OpenFabrics Alliance, Inc 50

—

Agent's data buffer setup &j

— —

user_data_sge user_data user_data_mr

IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_READ
IBV_ACCESS_REMOTE_WRITE
lkeya lkeya
rkeya

C 2011 OpenFabrics Alliance, Inc

Structure of Agent Use Phase (Q)

e e

buffer-info exchange

—performed using recv/send
*ping-pong data transfer loop

—do nothing! - client does all the work
end-of-run ack exchange
—performed using recv/send

C 2011 OpenFabrics Alliance, Inc

Set up agent buffer info exchange &%

ALLIANCE

— — ~ — — —

*Agent needs 2 new buffer_info buffers

—One to hold information on all local data buffers
*In this demo, agent has only 1 data buffer

—One to hold information on all remote data buffers
*In this demo, agent will not use this info

*Agent needs 2 new work requests

—One to send local buffer_info to client

—One to recv remote buffer_info from client

*In this demo, agent will not use this info

C 2011 OpenFabrics Alliance, Inc

*Agent needs 2 new ack buffers

—one to hold final transfer count to receive from
client

—other to hold final ack to send to client
*Agent needs 2 new work requests
—one to recv ack from client

—other to send ack back to client

C 2011 OpenFabrics Alliance, Inc

Agent buffer_info exchange 5

ALLIANCE

——e ——— _ — -

*our_post_recv() to get client's buffer_info
—Needed for synchronization, info not used by
agent

*our_post_recv() to get client's end-of-run ack
*our_await_completion() for first recv
*our_post_send() to send agent's buffer_info
our_await_completion() for send

C 2011 OpenFabrics Alliance, Inc

Synopsis of agents plng pong Ioopogﬂs

ALLIANCE

—

===

Nothing to do!!! Completely passive

C 2011 OpenFabrics Alliance, Inc

Agent's ack exchange (Q)

——

_ :‘\\, = ?,’ }

-our_await_completion() for client's ack with count
.convert final count from network byte order
our_post_send() to send final ack to client
our_await_completion() for send

C 2011 OpenFabrics Alliance, Inc

Example ping-rdma-1

—

—

*Walk through agent code as necessary

C 2011 OpenFabrics Alliance, Inc

ALLIANCE

Ping-Pong exercise ping-rdma-1le

————

= ——— e — - j’i ;}

*Opposite of previous example

*Server now does all the work

—Server does rdma_read on ping data
—Server does rdma_write on pong data
Client does nothing — CPU utilization is 0
*Exercise for reader during labs

C 2011 OpenFabrics Alliance, Inc

Server drives all data transfers &)

Client

Loop

Y

C 2011 OpenFabrics Alliance, Inc

Data

Server Agent

Loop

ALLIANCE

60

Loop

Loop

Data

C 2011 OpenFabrics Alliance, Inc

How to improve performance

.In everything done so far, all work requests (WRs
submitted to a send or receive queue have resulted
In a work completion (WC) being generated in a
completion queue (CQ)

‘RDMA specifications require this for all receive
work requests (RWRSs), but not for all send work
requests (SWRs) — the user can control this

*\We have been requesting this for all our SWRs in
our_setup_send_ wr() by setting the value of the
send flag field in struct ibv_send wr to
IBV_SEND_ SIGNALED

C 2011 OpenFabrics Alliance, Inc

Unsignaled send work requests &<

ALLIANCE

— =~ = — —

oIf we set the send flag field in struct ibv_send wr
to 0, no WC is generated in the corresponding CQ if
that SWR completes successfully (a WC is always
generated on any error processing a posted WR)

A SWR with send_flag value of O is called an
unsignaled work request

S0 how does a user know when an unsignaled work
request completes successfully?

C 2011 OpenFabrics Alliance, Inc

Unsignaled work request completion

— — —
= —

*An unsignhaled WR completes successfully when:

—A WC for a subsequent WR is retrieved from the
CQ associated with the SQ where the unsignaled
WR was posted

—And that subsequent WR was posted on the same
SQ as the unsignaled WR

—And that subsequent WR is ordered after the
unsignaled WR

*Only then can resources associated with the
unsignaled WR be reused

C 2011 OpenFabrics Alliance, Inc

Ordering rules

— —
= —

*The rules for processing WRs and WCs allow for
flexibility in actual implementations

*WRs submitted to a single SQ must be initiated,
sent and completed in the order they are submitted

However, processing of the data transfers from
multiple WRs submitted to the same SQ can be
done in parallel — in particular, data may be placed
Into target memory Iin any order

C 2011 OpenFabrics Alliance, Inc

Ordering rules continued

—— — B = = = —

e — e =

oIf different messages, or parts of the same
message, being processed in parallel refer to the
same or overlapping buffers, then it is possible that

C

the last incoming write will not be the last outgoing

ata sent

—or an RDMA_WRITE, the contents of the target

buffer are indeterminate until a subsequent Send
message Is completed by consuming a WC at the
target (e.g., an ACK is sent back and completes at
the target)

C 2011 OpenFabrics Alliance, Inc

Special ordering rules

——— — ~ — ——

R — —— e~

WWhen a user submits to the same SQ a SWR for
RDMA_ WRITE followed by a SWR for
RDMA _ READ targeting the same remote buffer
(which is what we are doing in this demo), the
RDMA READ must return the data as modified by
the RDMA WRITE

*This Is always true, whether or not the
RDMA_ WRITE SWR is signaled or unsignaled

C 2011 OpenFabrics Alliance, Inc

Benefiting from these rules

—_— — - — — — =

e — e =

In this demo we submit to the same SQ a SWR
for RDMA WRITE followed by a SWR for
RDMA _READ both targeting the same buffer

*Therefore, the RDMA_ WRITE SWR can be
unsignaled (i.e., it generates no WC) because the
WC generated by the SWR for RDMA _READ
guarantees that the SWR for RDMA_WRITE
completed successfully prior to the RDMA_ READ
SWR completion

C 2011 OpenFabrics Alliance, Inc

Revised client ping-pong loop

— e

* turn off SIGNALED flag on RDMA_ WRITE */
client_conn->user_data send work request.send flags
&= ~IBV_SEND_ SIGNALED;
client_conn->wc_rdma_both = 0;
while (client_conn->wc_rdma_both < options->limit) {
call our_post_send() for RDMA_ WRITE to agent
[***** do NOT call our_await_completion() *****/

call our_post _send() for RDMA_READ from agent
call our_await_completion()
client_conn->wc_rdma_both++;

C 2011 OpenFabrics Alliance, Inc 69

Ping-pong example plng -rdma-2 &3

LLIANCE

*Run it and compare round-trip time with previous
demo

Diff the client.c files to show how minor the
differences are

Walk the code as necessary

C 2011 OpenFabrics Alliance, Inc

LLIANCE

Ping-Pong using only RDMA_WRITE &

— -
= —

‘Use RDMA_ WRITE on both client and agent
—Client does rdma_write of ping data
—Agent does rdma_write of pong data

Problem — how does each side know when 1t is its
turn to act?

*Solutions

—Exchange acks using send/recv

Client sends ack after it completes its rdma_write
*Agent sends ack after it completes its rdma_write
—Use memory patterns with no acks exchanged

C 2011 OpenFabrics Alliance, Inc

PENFABRICS
LLIANCE

Using RDMA_WRITE with ack

—_—

—

Client Server Agent

Loop

Loop

Data

ACK
/
ACK recVv

'

C 2011 OpenFabrics Alliance, Inc

Using RDMA_WRITE without ack &)

——

Server Agent

Client

Loop

Loop

Data

C 2011 OpenFabrics Alliance, Inc

Ping using RDMA_WRITE with ack %/,

ALLIANCE

e E
- — e

‘Use RDMA_ WRITE followed by an ack
—Client does rdma_ write to deliver ping data to
agent

—Client sends ack to agent

—Agent receives ack from client

—Agent does rdma_write to deliver pong data to
client

—Agent sends ack to client
—Client receives ack from agent

C 2011 OpenFabrics Alliance, Inc

Performance issues O

ALLIANCE

—— = = — —

*Following each RDMA_WRITE with a send of an
ack effectively doubles the time to do a ping, and
doubles the time to do a pong

*Might as well just do a send of the ping data and a
send of the pong data (as we did in earlier demos)

How can we avoid the “extra” ack sends?

C 2011 OpenFabrics Alliance, Inc

Token Passing

— — ~ ~ — ——

*These acks effectively “pass the token” from
current writer to next writer

1.Client starts with token

2.Client does rdma_write to agent

3.Client passes token to agent (sends ack)
4.Agent gets the token (receives ack)
5.Agent does rdma_write to client

6.Agent passes token to client (sends ack)
7.Client gets token from agent (receives ack)
8.Loop to step 2

C 2011 OpenFabrics Alliance, Inc

Using the Data as the Token

S

-Instead of passing the token separately from data, Use the
data as the token
—That's how it worked with Send/Recv!!

*Requires the side receliving the data to somehow
recognize that it has ALL arrived

*Simple way — detect a change in buffer contents
—Requires busy waiting on the data buffer

—Must be sure ENTIRE buffer has been changed
*One possible technique

—Fill receive buffer with character not in data
—Busy wait until character is nowhere in buffer

C 2011 OpenFabrics Alliance, Inc 77

ALLIANCE

Ping-Pong example ping-rdma-3 O

e E
= — ——

Use RDMA_ WRITE without ack
Client needs 2 buffers (as before)
*Agent also needs 2 buffers (before had only 1)

—Client does rdma_write into agent's ping buffer

—Agent copies data from ping buffer to pong buffer

—Agent does rdma_write from pong buffer to client

*Each side needs to detect arrival of ALL data from other side

*Done by busy waliting for change in contents of ENTIRE
receive buffer

C 2011 OpenFabrics Alliance, Inc

Data flow Iin ping-rdma-3 &)

R ———— —

Client Server Agent

T *

Loop Copy Loop

Pong = RDMA_WRITE
Data

C 2011 OpenFabrics Alliance, Inc 79

1.Client fills ping buffer with data pattern containing only
printable characters

2.Client fills pong buffer with different pattern containing all
binary zeroes (\O' character)

3.Client does RDMA_WRITE of ping data to agent
4.Client waits for RDMA_WRITE to complete

5.Client busy waits until all binary zeroes in pong buffer have
been completely replaced

6.Client optionally verifies data in pong buffer
7.Client loops to step 2

C 2011 OpenFabrics Alliance, Inc 80

Agent buffers and pattern use

: T T —— —— - ———

1.Agent fills ping buffer with pattern containing all
binary zeroes (\O' character)

2.Agent busy waits until all binary zeros in ping buffer
have been completely replaced

3.Agent copies ping buffer into pong buffer

4.Agent fills ping buffer with pattern containing all
binary zeroes (\O' character)

5.Agent does RDMA_ WRITE of pong data to client
6.Agent waits for RDMA_WRITE to complete

/.Agent loops to step 2

C 2011 OpenFabrics Alliance, Inc

*Both sides take turns domg RDI\/IA WRITE

‘User data is the token

*Each side busy waits on data buffer to detect token
*No extra ack messages are necessary

Run demo
*Walk code as necessary

C 2011 OpenFabrics Alliance, Inc

LLIANCE

Ping-Pong using only RDMA_READ O%)

— -
= —

T e — e e

Use RDMA_READ on both client and server

—Server does rdma_read to get ping data from
client

—Client does rdma_read to get pong data from
server

Problem — same as before — how to know when
it's “your turn” to ack

*Solution with acks to pass token
—EXxercise for reader
*Solution without acks — Is It possible?

C 2P12 NoenFi rics Alliance. Inc

Using only RDMA READ with ack OPE(N%;MS

—_—

—

Client Server Agent

& &
3 3

Pong

Data

ACK Seng
\‘
ACK
! v
84

C 2011 OpenFabrics Alliance, Inc

Ping using RDMA_READ with ack &%

ALLIANCE

——

‘Use RDMA_READ with acks

—Agent does rdma_read to get ping data from
client

—Agent sends ack to client
—Client receives ack from agent

—Client does rdma_read to get pong data from
agent

—Client sends ack to agent
—Agent receives ack from client

e —

C 2011 OpenFabrics Alliance, Inc

LLIANCE

—
—

Blast using only RDMA_WRITE &

*Change our attention from ping-pong to blast

Client uses chained work requests to blast as
much data as possible to agent

*Agent does nothing
—CPU utilization i1s 0

Client does everything
—Uses rdma_write with chain of all available SWRs

—For large enough message sizes, throughput is
near maximum bandwidth available to user
payload (i.e., after accounting for protocol headers,

2011 OpenFabrics Alliance, Inc
L |

Blast Buffers

— — =

— — — — —_— ——

Arbitrary number of buffers in both client and agent

-Buffers are written by client to agent using chained
work requests

-Buffers are reused on both sides

Client does not synchronize buffer use by agent
Need same organization of Use Phase

—Perform buffer_info exchange using send/recv
—Client blasts data using RDMA_ WRITE

—Perform end-of-run ack exchange using send/recv

C 2011 OpenFabrics Alliance, Inc

Buffer Send

Server Agent

Local

1“ e

RDMA_WRITE

RDMA_WRITE

buffers Send

Send Buffer
Info
MR
o
— g
b | —
-
MR
-1
| A—

Recwv

Send ACK

C 2011 OpenFabrics Alliance, Inc

ALLIANCE

Blast example blast-rdma-1 &%,

— - =
—— — —— = — -

S —— —_—

Client uses chained work requests to blast as
much data as possible to agent with one
Ibv_post_send()

*Agent does nothing

—CPU utilization is O

Client does everything

—Uses rdma_ write with chain of all available SWRs
Run demo

\Walk code as necessary

C 2011 OpenFabrics Alliance, Inc

ALLIANCE

Blast with agent doing all work

= 7 = VE;"’ = j/ j

*Agent uses chained work requests to blast as
much data as possible from client

Client does nothing
—CPU utilization is O

*Agent does everything
—Uses rdma_read with chain of all available SWRs

In Lab, exercise for reader

C 2011 OpenFabrics Alliance, Inc

Send
Buffer
- o= +-

Send =
o
= -
— — -1 —_
A
i z
H H
= -
-1
B \ SN
send Total #
buffers
Send
F-Wed 4 Recw
- AT

C 2011 OpenFabrics Alliance, Inc 91

Persistent access

— —

——

‘RDMA_WRITE and RDMA_READ are both “one-
sided”

—Side issuing the RDMA_WRITE or RDMA_ READ
IS active — it does all the work

—Other side Is passive — it does nothing
_eads to idea of persistent access

—Passive side gives access permission to active
side only once

—Active side can issue RDMA WRITE or

RDMA READ repeatedly to same memory region

\W (11 [C o f & 3k 2 A i aLes In®

Publish-Subscribe data flow &D

R ———— —

Subscriber Publisher
Y
Loop to
Loap10 Dat.a et create/update
use data Reposrtcry data
Y Y

C 2011 OpenFabrics Alliance, Inc 93

OPENFABRICS
ALLIANCE

Publish-subscribe pub-sub-rdma-1

e = e —

— P

———— —— ———

*Publisher (server) is passive side (issues no |1/O)
—Periodically updates its local data repository
*Subscriber (client) is active side

—Periodically does RDMA READ from server into
local buffer

*Question — how does subscriber know ALL data in
Its local buffer is valid?

C 2011 OpenFabrics Alliance, Inc

Data flow in pub-sub-rdma-1 &)

e

Client Server Agent
Subscriber Publisher
Y
Copy of Looh s
111-:: 5;:. published "‘RDMA_READ crea%::’spgate
data ata
y Y

C 2011 OpenFabrics Alliance, Inc 95

—— — B = = = —

e — e =

*Problem caused by changes to block of virtual
memory while it is being transferred onto wire

—data transmitted may be only partially changed

«Solutions

—For single “words”, memory hardware solves it
—For small blocks, could transmit them twice
*Receliving side compares the blocks

*Uses them only if both equal

*Rereads if both not equal

*Depends on speed of update and speed of transfer

C 2011 OpenFabrics Alliance, Inc

—_~AATaYr 170 cooMmnlimte anNn

Data Integrity using CRC @

ALLIANCE

— E——— —

*Include CRC as part of data reposnory

*To update local data repository, publisher must
1.Change data in repository (thereby invalidating CRC)
2.Compute new CRC on updated repository into a temp
3.Store temp into CRC slot in local data repository

*To verify integrity of its local buffer, subscriber must
1.RDMA _ READ repository from server into local buffer
2.Compute CRC on local buffer

3.If CRC checks ok, use this buffer

4.1f CRC |s bad repeat at step 1 (because

Publish-Subscribe pub-sub-rdma-2

— e ——

Server (publisher) is active side
—Periodically updates its local data repository

—After each update, server does RDMA WRITE to
remote buffer in client

Client (subscriber) is passive side (issues no 1/O)
—Periodically looks at its local buffer

*Question — as before — how does subscriber know
ALL the data In its local buffer is valid?

C 2011 OpenFabrics Alliance, Inc

Data flow in pub-sub-rdma-2 &)

e

Client Server Agent
Subscriber Publisher
Y
Copy of .
::: E;:; published I~ RERVN OVRITE crea%?sp:ate
dat& ata
Y Y

C 2011 OpenFabrics Alliance, Inc 99

Adding CRC to pub-sub-rdma-2

e - /

Before doing RDMA_WRITE of its data to client,
server must compute CRC of all data and include that
In repository data written to client

*To verify integrity of its local repository, client must
do:

1.Copy area written by server into another buffer
2.Compute CRC on that buffer
3.If CRC checks ok, use that buffer

4.1f CRC Is bad, repeat at step 1 (because copy was
made while server was transferring new data)

C 2011 OpenFabrics Alliance, Inc

Exercise pub-sub-rdma-2e

— — ==

——— — e —— —

Client (publisher) is active side
—Periodically updates its local data repository

—After each update, client does RDMA WRITE to
remote buffer in agent

*Agent (subscriber) is passive side (issues no 1/O)
—Periodically looks at its local buffer

*Question — as before — how does subscriber know
ALL the data In its local buffer is valid?

Exercise for the reader In lab

C 2011 OpenFabrics Alliance, Inc

Data flow in pub-sub-rdma-2e &)

e

Server Agent Client
Subscriber Publisher

Data RDMA_WRITE Loop to
L:: E;tt; : - — createf/update
u Repository data

C 2011 OpenFabrics Alliance, Inc 102

Unreliable Datagram (UD) 2
Mode _ OFENFABRICS

i —

Implemented only on IB, not IWARP

*Port space parameter to rdma_create_id has value
RDMA_PS UDP

«Can only use Send/Recv, not RDMA_WRITE or RDMA_READ
—Both sides must actively participate in transfer
—One side does ibv_post_recv(), other ibv_post_send()

*Transmission is still in messages, not streams
Messages can be lost, since route not resolved in advance
Message size limited to link MTU of underlying technology

C 2011 OpenFabrics Alliance, Inc 103

Multicast

*Only possible with IB, not IWARP

*Is optional to implement in IB

*Only possible in Unreliable Datagram (UD) mode
—Only Send/Recv operations allowed

—Both sides must actively participate in data transfers

*Allows single SEND to be delivered to RECV In
multiple destinations

*Receiver must have RECV posted for next Send
*Recelver must process each RECV completion

C 2011 OpenFabrics Alliance, Inc

ALLIANCE

Multicast-Publish-Subscribe é)

= ~ e — —

—— - — ——

*Active processing of updates on both sides
*Server establishes multicast group

Server maintains data repository, periodically
updates and sends it to multicast group

Clients join multicast group

Clients need 2 outstanding ibv_post_recv()
*When client ibv_post_recv() completes

—client posts another to receive in second buffer
—then uses the data from first buffer

C 2011 OpenFabrics Alliance, Inc

ALLIANCE

Ping-Pong example ping-sr-4

— e

«Set both cm event channel and completion
channel into O_ NONBLOCK mode

‘Use POSIX poll() to wait for both cm events and
completion events

Closest in style to “normal” sockets synchronous
programming

NO need for extra thread
RUN
\Walk the code

C 2011 OpenFabrics Alliance, Inc

End of Part 2 &)

C 2011 OpenFabrics Alliance, Inc 107

