Visualize and Analyze your Network Activities using OSU INAM

Hari Subramoni
The Ohio State University
E-mail: subramon@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~subramon

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
OUTLINE

▪ Introduction & Motivation
▪ Design of OSU INAM
▪ Impact of Profiling on Application Performance
▪ Features of OSU INAM & Demo
▪ Conclusions & Future Work
IB clusters and the MPI-based applications complex

Challenging to identify interaction between and impact of underlying IB network on performance of HPC application

Such knowledge critical to maximize efficiency and performance of HPC applications

Rely on a plethora of MPI level and IB level tools to analyze and understand an HPC system to answer questions like

Why is my application running slower than usual now?
Several tools exists to analyze and inspect the IB fabric
 • e.g.: Nagios, Ganglia, Mellanox Fabric IT, INAM, BoxFish

Lack of interaction with & knowledge about MPI library
 • Cannot classify traffic based on MPI primitives
 • e.g.: Point-to-point, Collective, RMA
 • Cannot correlate of network level and MPI level behavior

Lack of interaction with the job scheduler
 • Cannot classify network traffic as belonging to a particular job
 • Cannot pin point source of conflict at finer granularity
Several tools exist that allow to profile MPI library
• TAU, HPCToolkit, Intel Vtune, IPM, mpiP

Lack of interaction with & knowledge about IB fabric
• Cannot correlate network level and MPI level behavior

Unable to provide deep insights into MPI library
• Recently proposed MPI_T interface enables deep introspection
• e.g.: MPIAdvisor – No knowledge about the underlying IB fabric
How can we design a tool that enables in-depth understanding of the communication traffic on the InfiniBand network through tight integration with the MPI runtime?
OVERVIEW OF OSU INAM

- A network monitoring and analysis tool that is capable of analyzing traffic on the InfiniBand network with inputs from the MPI runtime
 - http://mvapich.cse.ohio-state.edu/tools/osu-inam/
- Monitors IB clusters in real time by querying various subnet management entities and gathering input from the MPI runtimes
- Capability to analyze and profile node-level, job-level and process-level activities for MPI communication
 - Point-to-Point, Collectives and RMA
- Ability to filter data based on type of counters using “drop down” list
- Remotely monitor various metrics of MPI processes at user specified granularity
- "Job Page" to display jobs in ascending/descending order of various performance metrics in conjunction with MVAPICH2-X
- Visualize the data transfer happening in a “live” or “historical” fashion for entire network, job or set of nodes
- OSU INAM v0.9.4 released on 11/10/2018
 - Enhanced performance for fabric discovery using optimized OpenMP-based multi-threaded designs
 - Ability to gather InfiniBand performance counters at sub-second granularity for very large (>2,000 nodes) clusters
 - Redesign database layout to reduce database size
 - Enhanced fault tolerance for database operations
 - OpenMP-based multi-threaded designs to handle database purge, read, and insert operations simultaneously
 - Improved database purging time by using bulk deletes
 - Tune database timeouts to handle very long database operation
 - Improved debugging support by introducing several debugging levels
Introduction & Motivation

Design of OSU INAM

Impact of Profiling on Application Performance

Features of OSU INAM & Demo

Conclusions & Future Work
OSU INAM FRAMEWORK

System Administrators, MPI Developers, Application Scientists

SLURM Job Scheduler
- SLURM Database

HPC Cluster
- Compute Node

InfiniBand Network

OSU INAM
- Web-based Front End for Visualization
- Java Web server
- OSU INAM Database (MySQL)
- osuinamd

Query Job Information
- MPI Job Data
- IB Fabric Data
Collect data specific to each MPI process and pushes it to OSU INAM Database
 • Allows analysis and visualization job/node/process level granularities

Thread is a listener – accepts data from remote MPI processes
 • Avoid bottlenecks that arise where thread actively polls each MPI process

OSU INAM communication requirements
 •

IB based communication to achieve high performance and low latency
 • Uses interrupt driven mode in IB
 • Reduce CPU utilization by eliminating the need to continually poll

Design choices for IB transport protocol
 • IB supports several transport protocols – RC, XRC, DC, UD
 • UD / DC transport protocols have significant benefits for scalability and memory footprint
 • UD protocol as the IB transport protocol for the MPI data collection thread
- Enhance MPI_T based profiling in MVAPICH2-X
 - CPU utilization of each process; Memory utilization of each process; Inter-node and intra-node communication buffer utilization; Intra-node, Inter-node and total bytes sent/received and, Total bytes sent for RMA operations

- MVAPICH2-X collects information via MPI_T and transmits updates to the MPI data collection thread via UD Queue Pairs (QP) at user specified intervals
 - Default value: 30 seconds

- Each packet sent has some meta data information used later to retrieve the data from the database

- MPI data collection thread dumps the UD QP and Local Identifier (LID) that it is listening on to a file

- This location of this file is passed through environment variables to MPI runtime by the system administrator
Fabric Discovery Thread

- Responsible for discovering the IB fabric and extracting data from selected components
- Identify the various IB devices present in the network and their current status and stores in DB
- Computes network path between each pair of hosts and stores in DB
- Monitor the network for any changes at a user specified interval
- Queries performance counters from selected components at user specified intervals
- Queues up the message in FIFO to the database thread for eventual insertion into the database

Database Thread

- Responsible for receiving information from the MPI data collection and the FD threads
- Create the tables in schema that the tool expects
 - Automatically update tables used by earlier versions of tool
Consists of multiple tables to enable various features of OSU INAM

- Tables to hold InfiniBand network infrastructure related data
 - “route”, “links”, “nodes”, “port data counters”, and “port errors”
 - Hold data for links, nodes, ports and routes
- Tables to keep track of MPI process communication characteristics
 - “process info”, “process comm main”, and “process comm grid”

Allows OSU INAM to

- Analyze and profile node-level, job-level and process-level activities for MPI
- Profile and report parameters/counters of MPI processes at the node-, job- and process-level
- Visualize the communication map at process-level and node-level granularities
- Analyzing and classifying InfiniBand network traffic flows in a physical link
Queries OSU INAM and SLURM databases to obtain MPI, Network and Job specific information
 • Users can modify frequency of query
Validates and correlates results of different queries and presents data to the user in an unified fashion
Based on the Spring MVC (Model, View and Controller) architecture
Client side uses light-weight JQuery library to send HTTP requests through AJAX
OSU INAM can send data to and retrieve responses from the server asynchronously
 • Dramatically improves user experience by hiding data processing / page rendering in the background
1. HTTP request by users action sent to server side by Web browser / JQuery library with AJAX
2. Tomcat server receives the request, passes it to Spring framework
3. Spring framework dispatches request to the corresponding controller
4. Selected controller queries the model for some information in database
5. After processing, the Spring framework receives response to build the view through JSP, XML, etc
6. HTTP response will be sent back to the browser at the client side and the Web page will get updated
OUTLINE

▪ Introduction & Motivation
▪ Design of OSU INAM
▪ Impact of Profiling on Application Performance
▪ Features of OSU INAM & Demo
▪ Conclusions & Future Work
Each node of our 184 node testbed has eight Intel Xeon cores running at 2.53 Ghz with 12 MB L3 cache; 12 GB of memory and Gen2 PCI-Express bus

Equipped with MT26428 QDR ConnectX-2 HCAs

Interconnected using Mellanox MTS3610 QDR switch, with 11 leafs, each having 16 ports.

The operating system used is Red Hat Enterprise Linux Server release 6.5 (Santiago), with the 2.6.32-431.el6.x86_64 kernel version

Mellanox OFED version 2.2-1.0.1 is used on all machines.
OVERVIEW OF THE MVAPICH2 PROJECT

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,950 organizations in 86 countries
 - More than 527,000 (> 0.5 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov ‘18 ranking)
 - 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China
 - 14th, 556,104 cores (Oakforest-PACS) in Japan
 - 17th, 367,024 cores (Stampede2) at TACC
 - 27th, 241,108-core (Pleiades) at NASA and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
 - http://mvapich.cse.ohio-state.edu

- Empowering Top500 systems for over a decade
Data collection adds very less than degradation when compared to the native performance.
Performance of Broadcast and Alltoall at 512 processes
- Data collection adds very less degradation when compared to the native performance
Performance of NAS parallel benchmarks at 512 processes

Little to no impact on the performance due to the addition of the data collection and reporting

- **Performance of NAS parallel benchmarks at 512 processes**
- **Little to no impact on the performance due to the addition of the data collection and reporting**
OUTLINE

- Introduction & Motivation
- Design of OSU INAM
- Impact of Profiling on Application Performance
- Features of OSU INAM & Demo
- Conclusions & Future Work
Analyzing and Understanding Inter-node Communication Buffer Allocation and Use

Identifying and Analyzing Sources of Link Congestion

Monitoring Jobs Based on Various Metrics

Capability to Profile and Report Several Metrics of MPI Processes at Different Granularities
OUTLINE

▪ Introduction & Motivation
▪ Design of OSU INAM
▪ Impact of Profiling on Application Performance
▪ Features of OSU INAM & Demo
▪ Conclusions & Future Work
Conclusions & Future Work

- Designed OSU INAM capable of analyzing the communication traffic on the InfiniBand network with inputs from the MPI runtime
- Latest version (v0.9.4) available for free download from
 - http://mvapich.cse.ohio-state.edu/tools/osu-inam/
- OSU INAM has been downloaded more than 500 times directly from the OSU site
- Provides the following major features
 - Analyze and profile network-level activities with many parameters (data and errors) at user specified granularity
 - Capability to analyze and profile node-level, job-level and process-level activities for MPI communication (Point-to-Point, Collectives and RMA)
 - Remotely monitor CPU utilization of MPI processes at user specified granularity
 - Visualize the data transfer happening in a "live" or historical fashion for Entire Network, Particular Job One or multiple Nodes, One or multiple Switches
- Future Work
 - Add support to profile and analyze GPU-based communication
 - Capability to profile various PGAS programming languages
THANK YOU!

subramon@cse.ohio-state.edu, panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/