

15th ANNUAL WORKSHOP 2019

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Hari Subramoni The Ohio State University E-mail: subramon@cse.ohio-state.edu http://www.cse.ohio-state.edu/~subramon Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

WHY COLLECTIVE COMMUNICATION MATTERS FOR HPC AND DL?

- Based on HPC Advisory Council (HPCAC) MPI application profiles
- Most application profiles show majority of time spent in collective operations
- Deep Learning applications are also sensitive to performance of collectives (all-reduce and broadcast)
- Optimizing the performance of collective communication is critical for the overall performance of HPC and DL applications

ARE COLLECTIVE DESIGNS IN MPI READY FOR MANYCORE ERA?

Alltoall Algorithms on single KNL 7250 in Cache-mode using MVAPICH2-2.3rc1

Why different algorithms of even a dense collective such as Alltoall do not achieve theoretical peak bandwidth offered by the system?

OVERVIEW OF THE MVAPICH2 PROJECT

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,975 organizations in 88 countries
 - More than 529,000 (> 0.5 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov '18 ranking)
 - 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China
 - 14th, 556,104 cores (Oakforest-PACS) in Japan
 - 17th, 367,024 cores (Stampede2) at TACC
 - 27th, 241,108-core (Pleiades) at NASA and many others
 - http://mvapich.cse.ohio-state.edu

Partner in the upcoming TACC Frontera System

AGENDA

Multiple directions being worked out by the MVAPICH2 project

- 1. Contention-aware, kernel-assisted designs for large-message intranode collectives (CMA collectives)
- 2. Integrated collective designs with SHARP
- 3. Designs for scalable reduction operations for GPUs
- 4. Shared-address space (XPMEM)-based scalable collectives
- Solutions have been integrated into the MVAPICH2 libraries and publicly available

IMPACT OF COLLECTIVE COMMUNICATION PATTERN ON CMA COLLECTIVES

MULTI-NODE SCALABILITY USING TWO-LEVEL ALGORITHMS

- Significantly faster intra-node communication
- New two-level collective designs can be composed
- 4x-17x improvement in 8 node Scatter and Gather compared to default MVAPICH2
 - S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI Collectives for Multi/Many-core Systems, IEEE Cluster '17, BEST Paper Finalist

Available since MVAPICH2-X 2.3b

PERFORMANCE OF NUMA-AWARE SHARP DESIGN ON XEON + IB CLUSTER

OSU Micro Benchmark (16 Nodes, 28 PPN)

HPCG (16 nodes, 28 PPN)

- As the message size decreases, the benefits of using Socket-based design increases
- NUMA-aware design can reduce the latency by up to 23% for DDOT phase of HPCG

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based Multi-Leader Design, SuperComputing '17.

Available since MVAPICH2-X 2.3b

SHARP BASED NON-BLOCKING ALLREDUCE IN MVAPICH2

- Complete offload of Allreduce collective operation to "Switch"
 - o Higher overlap of communication and computation

MVAPICH2-GDR VS. NCCL2 – ALLREDUCE ON DGX-2 (PRELIMINARY RESULTS)

- Optimized designs in upcoming MVAPICH2-GDR offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

EXPLOITING CUDA-AWARE MPI FOR TENSORFLOW (HOROVOD)

- MVAPICH2-GDR offers excellent performance via advanced designs for MPI_Allreduce.
- Up to 11% better performance on the RI2 cluster (16 GPUs)
- Near-ideal 98% scaling efficiency

A. A. Awan et al., "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation", Under Review, <u>https://arxiv.org/abs/1810.11112</u>

MVAPICH2-GDR VS. NCCL2 – RESNET-50 TRAINING

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

SHARED ADDRESS SPACE (XPMEM-BASED) COLLECTIVES

Offload Reduction computation and communication to peer MPI ranks

- Every Peer has direct "load/store" access to other peer's buffers
- Multiple pseudo roots independently carry-out reductions for intra-and inter-node
- Directly put reduced data into root's receive buffer

True "Zero-copy" design for Allreduce and Reduce

- No copies require during the entire duration of Reduction operation
- Scalable to multiple nodes

Zero contention overheads as memory copies happen in <u>"user-space</u>"

Available since MVAPICH2-X 2.3rc1

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

APPLICATION-LEVEL BENEFITS OF XPMEM-BASED COLLECTIVES

CNTK AlexNet Training

(Broadwell, B.S=default, iteration=50, ppn=28)

MiniAMR (Broadwell, ppn=16)

- Up to **20%** benefits over IMPI for CNTK DNN training using AllReduce
- Up to **27%** benefits over IMPI and up to **15%** improvement over MVAPICH2 for MiniAMR application kernel

BENEFITS OF XPMEM BASED MPI_BCAST

28 MPI Processes on single dual-socket Broadwell E5-2680v4, 2x14 core processor

BENEFITS OF XPMEM BASED MPI_SCATTER

• High cache-locality and **contention-free access** compared to CMA

BENEFITS OF XPMEM BASED MPI_GATHER

• High cache-locality for medium messages and contention-free access

BENEFITS OF XPMEM BASED MPI_ALLTOALL

28 MPI Processes on single dual-socket Broadwell E5-2680v4, 2x14 core processor

CONCLUDING REMARKS

- Many-core nodes will be the foundation blocks for emerging Exascale systems
- Communication mechanisms and runtimes need to be <u>re-designed</u> to take advantage of the <u>high concurrency</u> offered by manycores
- Presented a set of <u>novel designs</u> for <u>collective communication</u> primitives in MPI that <u>address several challenges for modern clusters</u>
- Demonstrated the <u>performance benefits</u> of our proposed designs under a variety of <u>multi-/many-cores and high-speed networks and a range of HPC and</u> <u>DL applications</u>
- These designs are already available in MVAPICH2 libraries

THANK YOU!

subramon@cse.ohio-state.edu, panda@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>