
15th ANNUAL WORKSHOP 2019

A DATA STORE FOR RESOURCE EFFICIENT

SERVERLESS COMPUTING
Adrian Schuepbach, Bernard Metzler, Patrick Stuedi, Jonas Pfefferle

[March, 2019]

IBM Zurich Research

[LOGO HERE]

Agenda

• Why Serverless Computing

• Current limitations and challenges

• Handling ephemeral data

• How to integrate an ephemeral data store?

• A prototype integration

• Summary

2 OpenFabrics Alliance Workshop 2019

A Decade ago: From Managed Clusters to Cloud Computing

The promise of Cloud Computing

✓ Virtually infinite computing resources on demand.

✓ No up-front commitment by cloud users.

✓ Pay for use of computing resources as needed.

✓ Economies of scale (large data centers).

✓ Simplified operation via resource virtualization.

✓ Higher hardware utilization by multiplexing workloads, even from different organizations.

…Cloud simplified operation?

o From managing physical resources to managing virtual resources

o Scaling for changing load requirements

o Resource idling/overprovisioning for stateful services like data bases

o Monitoring resource health

o System upgrades,

o …. 3 OpenFabrics Alliance Workshop 2019

“The data
center is now

the computer”

Serverless Computing

User

▪ Writes Cloud Function

▪ Defines event to trigger running the function

Serverless system

▪ Server instantiation

▪ Resource scaling/elasticity … auto-configuration

▪ Fault tolerance

▪ Logging

▪ Maintenance

✓User: No cluster setup/management

✓User: Fine grained, sub-seconds billing

✓Provider: optimize resource utilization

4 OpenFabrics Alliance Workshop 2019

AWS Lambda, IBM Cloud Functions, Google

Functions, Azure Functions, databricks serverless

…

Fundamental Differences to conventional Cloud Computing

The abstraction of executing a piece of code instead of first allocating resources

on which to execute that code then.

.

.

Paying for the code execution instead of paying for resources allocated to

executing the code.

.

.

Decoupling of computation and storage; they scale separately and

are priced independently.

5 OpenFabrics Alliance Workshop 2019

A simple Serverless Function

6 OpenFabrics Alliance Workshop 2019

> abcd

Function DatabaseReal time events Trigger

Data is loaded into system Function processes data and
stores result in DB

Result immediately becomes available for
query/analyze

Web applications/backends (IoT, chatbots, …)
Real time data processing (image transcoding, …)

Can we use Serverless Computing for Analytics and ML?

While preserving Serverless Model:

✓ Exploit massive parallelism

✓ Compose multiple stages reflecting
changing resource requirements

Challenges:

o Efficient function instantiation

o Efficient and fine grained coordination
between functions and stages (pub/sub,
DQ)

o Efficient communication of ephemeral
data between stages

Why is the handling of those
Ephemeral Data so difficult?

7 OpenFabrics Alliance Workshop 2019

A MapReduce Job on a managed Cluster

▪ Ephemeral data mostly written

and read locally

▪ Ephemeral data directly

exchanged between tasks

8 OpenFabrics Alliance Workshop 2019

Ex

Ex

Ex

Ex

Ex

Ex

Ex

Ex

Ex

Ex

MAP REDUCE

MapReduce in a Serverless World

▪ No direct communication between tasks

▪ Tasks are short living
• Tasks are stateless

• Read and write from distributed storage service

• Cannot directly pass state and data from function to

function

Efficiency of job execution highly dependent

on storage service’s

• Performance, and

• Elasticity

9 OpenFabrics Alliance Workshop 2019

Storage Service
(S3, Redis,…)

Map Reduce

Requirements for Serverless Ephemeral Storage: Performance

High performance for a wide

range of object sizes

▪ Todays KV stores have value

size limits

▪ Object stores have access

delay limits

10 OpenFabrics Alliance Workshop 2019

 ata si e

 ocoa

 itter R

CDF distribution of different types of workloads

Requirements for Serverless Ephemeral Storage: Elasticity

Fine grained billing reflecting used resources:

▪ Dynamically decide on storage service requirements
1. Amount of storage required

2. Storage performance required (including storage media type)

3. Data persistency/lifetime (inter-function vs. intra-function)

▪ Efficiently support jobs with varying storage
requirements during job exceution

✓User benefit:
• Allows for fine grained billing

• Allows for cost optimization

✓Provider benefit
• Allows for optimal resource usage

11 OpenFabrics Alliance Workshop 2019

Job 1

Job 3

ti
m

e

Ephemeral Storage Service

NVM bdev

Job 2

Which Data Store for Ephemeral Data?

▪ Object Store, such as S3

+Good for large data sets

− Inefficient for small data sets

▪ KV Store, such as Redis, Memcached, AWS ElastiCache

+Good for small data sets

− Inconvenient to store large data sets (indirection)

−No dynamic scaling

−DRAM only (costly)

▪ Apache Crail (incubating) data store

+Lowest delay for small data sets

+Highest throughput for large data sets

+Multi-tier (DRAM RDMA/TCP, NVMeF, block store) in

unified namespace

+Explicit data location control possible

+Can use RDMA

−No dynamic scaling (yet)

12 OpenFabrics Alliance Workshop 2019

Apache Crail

NVMf SPDKRDMATCP

FS Streaming KV HDFS

Fast Network (100Gb/s RoCE, etc.)

Data Processing Framework
(Spark, TensorFlow, λ Compute, …)

PCM GPUNVMeDRAM …

10th of GB/s
< 10 µsec

PRO: Known RDMA Usage Benefits CONTRA: The RDMA Setup Costs

▪ Low delay access

▪ Arbitrary sized objects

▪ Low CPU load

▪ Function resource setup costs

• R A objects (Q , , Q, …)

• Memory Registration

• Local memory pinning and translation

▪ Remote service setup costs

• RDMA objects (some RDMA objects may be

reusable)

▪ Both sides (function + storage service)

• Connection setup

• Think about connectionless RDMA

• Credential exchange with peer (for RDMA

Read/Write)

Is RDMA a good fit for Serverless Computing?

OpenFabrics Alliance Workshop 201913

The Development Environment

▪ Runtime environment: Kubernetes, Docker

▪ Cloud Functions: Apache OpenWhisk

▪ Ephemeral data store: Apache Crail

14 OpenFabrics Alliance Workshop 2019

Apache Crail

NVMf SPDKRDMATCP

FS Streaming KV HDFS

Fast Network (100Gb/s RoCE, etc.)

Data Processing Framework
(Spark, TensorFlow, λ Compute, …)

PCM GPUNVMeDRAM …

10th of GB/s
10 µsec

http://crail.apache.org/https://openwhisk.apache.org/

▪ Physics:

• 4 nodes x86 cluster

• 100Gbs RoCE

• Samsung 960 pro NVMe m.2

How to attach Serverless Function to an RDMA enabled

Ephemeral Data Store?

▪ How to balance performance and

elasticity?

▪ How to make integration as

seamless as possible?

15 OpenFabrics Alliance Workshop 2019

Kubernetes

Container

Host

R
-N

IC

Container

Storage
Service

R-NIC
RDMA/NVMeF

???

Function directly talks RDMA to Data Store

PRO

▪ Native RDMA integration

▪ Fast communication

CONTRA

▪ Unacceptable resource setup cost on

each function invocation

▪ Pass-through of RDMA device

(Kubernetes, Docker)

POTENTIAL SOLUTION

▪ Warm container caches:

• Functions

• Connections

• RDMA resources (memory registration etc.)

▪ Connectionless RDMA service

16 OpenFabrics Alliance Workshop 2019

Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF

Function talks via remote Proxy to Data Store

PRO

▪ Serverless framework does not need
to integrate with RDMA

▪ Elastic: no persistent state in function
container

▪ Proxy can be persistent, keeping
RDMA resources and storage state

CONTRA

▪ Performance penalty
• Data copy

• Data two times on the wire

POTENTIAL SOLUTION

▪ Try co-locating function and proxy
containers on same physical host

17 OpenFabrics Alliance Workshop 2019

Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF

Host

TCPTCP

Container

Proxy

TCP/IP

Function talks via host local Proxy to Data Store

PRO

▪ Serverless framework does not need

to integrate with RDMA

▪ Elastic: no persistent state in function

container

▪ Proxy can be persistent, keeping

RDMA resources and storage state

▪ Shared memory: zero copy possible

• Application handles data in shared memory

• Shared memory is RDMA registered

CONTRA

▪ One storage proxy per physical host

18 OpenFabrics Alliance Workshop 2019

Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF

Shared Memory

Container

Proxy

RDMA Storage Client as Service of unction’s Container

PRO

▪ Serverless framework does not need

to integrate with RDMA

▪ Direct communication between

function and storage client

▪ RDMA resources and storage state

can be ept persistent for ‘hot’

container

CONTRA

▪ Resource setup efficiency limited to

lifetime of ‘hot’ container

▪ Pass-through of RDMA device

(Kubernetes, Docker)

19 OpenFabrics Alliance Workshop 2019

Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF

DS Client

RDMA Storage as attachable Persistent Volume

PRO

▪ Clean integration like any other Volume

(Re is, N , , …)

▪ RDMA resource caching at own discretion

CONTRA

▪ Potentially more layers of software hiding

R A benefits (U E, …)

▪ Serverless framework today unaware of

persistent volumes

• Containers are instantiated w/o persistent volumes

• No unction’s A I to access mounte volume

POTENTIAL SOLUTION

▪ Extend serverless framework to work with

persistent volumes

• Mounting

• Storage API
20 OpenFabrics Alliance Workshop 2019

Kubernetes

Container

Container

Container

REDIS/REDIS API

Persistent Volume

Storage
Service

Our (tentative) Choice

▪ Direct Cloud Function attached RDMA interface seems unreasonable

▪ Investigating storage proxy, storage client, and persistent volume variants

▪ Persistent Volume too ambitious…for now…work in progress…

▪ Started evaluation with remote proxy

21 OpenFabrics Alliance Workshop 2019

Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF

Shared Memory

Container

Proxy

Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF

DS Client

Kubernetes

Co
ntai
ner

Co
ntai
ner

Co
ntai
ner

REDIS/REDIS API

Persistent Volume

Storage
Service

direct local proxy storage client persistent volume

Kubernetes

Container

Host

R-NIC

Container

Storage
Service

R-NIC

RDMA/NVMeF

Host

TCPTCP

Container

Proxy

TCP/IP

remote proxy

Kubernetes

Detailed System Setup

▪ Containerized Apache Crail instance

• RDMA/DRAM tier

• NVMeF tier

▪ Physically distributed data store

• Data nodes on all machines (DRAM + NVMeF)

▪ Single containerized storage proxy

• Runs Crail storage client on some physical node

• Maintains RDMA connections to Crail name

node and data nodes

• Accepts connections from remote container’s

functions via TCP/IP

• Converts storage requests

• Rea y to move closer to function’s container

22 OpenFabrics Alliance Workshop 2019

R-NIC

Container

Crail

R-NIC

RoCE + NVMeF

TCP

Container

Proxy

TCP/IP

Container

TCP

Container

TCP

Container

TCP

Container

TCP

Our first test Application: MapReduce Bucket Sorting

▪ MapReduce Sorting:
1. Read data from persistent store into map functions

2. Write intermediate data from map functions to Ephemeral Data store

3. Read intermediate data from Ephemeral Data store into reduce functions

4. Merge, reduce and write back to long term storage

▪ Bucket sort algorithm
• Map and Reduce functions written for

Apache OpenWhisk

▪ Sorting 100 GB

▪ Two storage tiers
• NVMeF

• DRAM

▪ 4 Systems

▪ 256 map functions

▪ 1 ... 256 reduce functions

23 OpenFabrics Alliance Workshop 2019

MAP REDUCE

Ephemeral
Data Store

Persistent
Data Store

Persistent
Data Store

256 1 .. 256

First Prototype Measurements

 hec ‘ oc et’ project ith architectural similarities for very promising results /o using R A
https://www.usenix.org/conference/osdi18/presentation/klimovic

24 OpenFabrics Alliance Workshop 2019

"logs": [

"2019-03-19T13:12:00.434215247Z stdout: Unhandled exception",

"2019-03-19T13:12:00.434282669Z stdout: Type=Bus error vmState=0xffffffff",

"2019-03-19T13:12:00.434288514Z stdout: J9Generic_Signal_Number=00000008 Signal_Number=00000007 Error_Value=00000000 Signal_Code=00000002",

"2019-03-19T13:12:00.434293426Z stdout: Handler1=00007F743EE924B0 Handler2=00007F743E797C40 InaccessibleAddress=00000000FFE00008",

"2019-03-19T13:12:00.434297256Z stdout: RDI=00007F743815AF60 RSI=00007F743FDE5060 RAX=00007F743C817130 RBX=0000000000000001",

"2019-03-19T13:12:00.434301063Z stdout: RCX=00000000FFE00000 RDX=0000000000100000 R8=00000000FFF00000 R9=0000000000000000",

"2019-03-19T13:12:00.434304917Z stdout: R10=00007F743C8167D0 R11=00007F743C817CD0 R12=0000000000100000 R13=00007F743815AF60",

"2019-03-19T13:12:00.434308773Z stdout: R14=00000000FFF00000 R15=00000000FFE00000",

"2019-03-19T13:12:00.434312422Z stdout: RIP=00007F743C554599 GS=0000 FS=0000 RSP=00007F743FDE4DE0",

"2019-03-19T13:12:00.434316048Z stdout: EFlags=0000000000010202 CS=0033 RBP=00000000FFE00000 ERR=0000000000000006",

"2019-03-19T13:12:00.434319761Z stdout: TRAPNO=000000000000000E OLDMASK=0000000000000000 CR2=00000000FFE00008",

"2019-03-19T13:12:00.434324186Z stdout: xmm0 726f6d654d5f4d4d (f: 1298091392.000000, d: 1.676463e+243)",

"2019-03-19T13:12:00.434331529Z stdout: xmm2 ffffff0000000000 (f: 0.000000, d: -nan)",

"2019-03-19T13:12:00.434338749Z stdout: xmm4 0000000000000000 (f: 0.000000, d: 0.000000e+00)",

"2019-03-19T13:12:00.434342253Z stdout: xmm5 0000000000000000 (f: 0.000000, d: 0.000000e+00)",

"2019-03-19T13:12:00.434349357Z stdout: xmm7 4059800000000000 (f: 0.000000, d: 1.020000e+02)",

"2019-03-19T13:12:00.434353064Z stdout: xmm8 4059800000000000 (f: 0.000000, d: 1.020000e+02)",

"2019-03-19T13:12:00.434356624Z stdout: xmm9 41a0000002000000 (f: 33554432.000000, d: 1.342177e+08)",

"2019-03-19T13:12:00.434360095Z stdout: xmm10 be63bb060ea0baeb (f: 245414640.000000, d: -3.675103e-08)",

"2019-03-19T13:12:00.434363743Z stdout: xmm11 3c4cd58858eb8000 (f: 1491828736.000000, d: 3.126201e-18)",

"2019-03-19T13:12:00.434367305Z stdout: xmm12 0000000000000000 (f: 0.000000, d: 0.000000e+00)",

"2019-03-19T13:12:00.434370933Z stdout: xmm13 403298c812e00000 (f: 316669952.000000, d: 1.859680e+01)",

"2019-03-19T13:12:00.434376032Z stdout: xmm14 0000000000000000 (f: 0.000000, d: 0.000000e+00)",

"2019-03-19T13:12:00.434379661Z stdout: xmm15 bc5b4805a84f36de (f: 2823763712.000000, d: -5.915697e-18)",

"2019-03-19T13:12:00.434383262Z stdout: Module=/opt/java/openjdk/jre/lib/amd64/compressedrefs/libj9gc29.so",

"2019-03-19T13:12:00.434387021Z stdout: Module_base_address=00007F743C393000",

"2019-03-19T13:12:00.434390473Z stdout: Target=2_90_20180813_291 (Linux 4.15.0-33-generic)",

"2019-03-19T13:12:00.434393984Z stdout: CPU=amd64 (32 logical CPUs) (0x178681b000 RAM)",

"2019-03-19T13:12:00.434912438Z stdout: JVMDUMP039I Processing dump event \"gpf\", detail \"\" at 2019/03/19 13:12:00 - please wait.",

"2019-03-19T13:12:00.435907288Z stdout: JVMDUMP032I JVM requested System dump using '//core.20190319.131200.1.0001.dmp' in response to an event",

"2019-03-19T13:12:00.545887744Z stdout: JVMPORT030W /proc/sys/kernel/core_pattern setting \"|/usr/share/apport/apport %p %s %c %d %P\" specifies

that the core dump is to be piped to an external program. Attempting to rename either core or core.8."

],

Conclusions

▪ Serverless Computing

• Promising technology, the next natural step after Cloud computing

• Ease of programming

• Automated resource management

• Pay-as-you-go

• any unsolve issues (security, ephemeral an urable storage, net or ing, management, …)

• Solving those issues will make Serverless Computing attractive for almost all applications

▪ Our current effort:

• Focus on the Ephemeral Storage aspect

• Integrate Apache Crail backed Ephemeral Data Store

• Promising high performance, cost efficiency

• May use RDMA if available

▪ Other related activities:

• Flexible provisioning/autoscaling with Apache Crail

• Add distributed communication primitives to the store

25 OpenFabrics Alliance Workshop 2019

15th ANNUAL WORKSHOP 2019

THANK YOU

[LOGO HERE]

