
15th ANNUAL WORKSHOP 2019

REMOTE PERSISTENT MEMORY
PERFORMANCE, CAPACITY, OR PERSISTENCE?

Paul Grun

[March 20, 2019]

Cray Inc

OpenFabrics Alliance Workshop 20192

This is an update on a long-
running Work in Progress

(from last year’s Workshop)

AT LAST YEAR’S WORKSHOP …

OpenFabrics Alliance Workshop 20193

…we began to focus on
“use cases”

The discussion
continued at FMS 2018

And continues again
today

Objective is to define a set of use
cases and requirements that can
be used to drive an API definition

THREE CATEGORIES OF USE CASES WERE DESCRIBED

OpenFabrics Alliance Workshop 20194

FLASH MEMORY SUMMIT 2018

OpenFabrics Alliance Workshop 20195

We began to describe
Consumer Requirements and
System Objectives that will
impact the network
architecture needed to support
RPM

PERSISTENT MEMORY SUMMIT 2019

OpenFabrics Alliance Workshop 20196

We began to discover that use
cases imply certain system
characteristics

Persistence is only one

MOVING THE BALL A LITTLE FURTHER DOWNFIELD

▪ Objective for this session – integrate the various characteristics of RPM into a discussion

of the use cases already presented

▪ Ultimate goal – Propose an API that meets the requirements described by the set of use

cases

7 OpenFabrics Alliance Workshop 2019

INTRODUCING THE ‘CHARACTERISTICS’ VARIABLE

▪ Many view the emerging Persistent Memory layer in the memory hierarchy as

monolithic, evolving toward Nirvana

• Nirvana defined as “infinite capacity, infinite bandwidth, zero latency, zero cost”

• Oh, and “infinite retention”

▪ The truth is that there will always be tradeoffs

• Performance vs Capacity vs Cost

• Local vs Remote

▪ How to choose the right tradeoffs?

8 OpenFabrics Alliance Workshop 2019

Our objective today is to take a refined look at the
emerging list of use cases and try to understand which
characteristics matter most

Assertion – understanding these characteristics, and
how they map onto different use cases, will guide
the development of networks to support RPM.
(Which is our ultimate goal.)

THE FAMILIAR MEMORY HIERARCHY

OpenFabrics Alliance Workshop 20199

memory

storage

It’s a dessert topping!
It’s a floor wax! *

It’s clear that Persistent
Memory isn’t exactly memory,
and it’s not precisely storage…

* With thanks to SNL, 1/10/76

…so how do we characterize it?
What role does it fill, exactly?

THE FAMILIAR MEMORY HIERARCHY …

OpenFabrics Alliance Workshop 201910

memory

storage

… with a wrinkle

Local

Remote

capacity

performance
…and there are tradeoffs
within the sublayers

Turns out that this new
layer isn’t monolithic…

PM

cost

H
o

t
C

o
ld

W
ar

m

KEY DRIVERS

OpenFabrics Alliance Workshop 201911

Application requirements
Is data being shared among threads or nodes?

Are there application performance or capacity requirements?

Key system design objectives Scalability? In which dimension? Single server? Cluster?

Selecting the right technology
depends on understanding (at

least):

Eventual API proposal should reflect a combination of
Use Cases and App Requirements

OpenFabrics Alliance Workshop 2019 12

Database
Applications

• A modifiable,
in-memory
database that
survives power
cycles

Data Analytics

• Create a
persistent
database once,
run new
queries
repeatedly

Graph Analytics

• Operate on
larger graphs
than would fit
in local
memory

Commercial
Applications

• Enable
collaboration
on large scale
projects

HPC
Applications

• Scalability,
parallel
applications

• Checkpointing

EXAMPLE TARGETS FOR PM

capacity, density, performance persistence, capacity, costpersistence, capacity

USE CASES, SO FAR - WIP

▪ Data Availability/Protection
Replicate local cache to RPM to achieve data availability

▪ Improved Uptime, Fast Restart
Quick server recovery following power cycle

Checkpoint restart

▪ Local System Performance
Eliminate disk accesses e.g. to stored databases

▪ Scale Up Architectures
In-memory databases that exceed local DRAM capacity

▪ Scale Out Architectures
Distributed databases, analytics applications, HPC parallel applications

▪ Disaggregated System Architectures
Compute capacity scales independently of memory capacity

▪ Shared Data
Support simultaneous data access from multiple processes

A central shared repository for a distributed team collaborating on a large artifact

▪ Improved Disk Storage Performance

13 OpenFabrics Alliance Workshop 2019

- First developed at last year’s
RPM Think Tank,

- Revised and extended at
Flash Memory Summit 2018,

- And again at the PM Summit
2019

SOME APPLICATION CHARACTERISTICS

▪ Application Objectives

Performance vs capacity?

▪ Sharing Models

Shared data vs unshared data?

A shared service vs a dedicated service?

▪ Memory Model

Flat address space vs object stores?

▪ Characteristic Traffic Patterns

Small byte operations vs bulk data transfer?

▪ Ordering Semantics, Atomicity

▪ …

14 OpenFabrics Alliance Workshop 2019

These aren’t exactly “Use Cases”, but will clearly impact the API design

PERSISTENCE? NOT ALWAYS REQUIRED

▪ Persistence is valuable for:

High Availability applications where maintaining state between power cycles is crucial

Reducing or eliminating the need to access slower media, e.g. HDDs

Data protection and preservation

▪ Persistence not required, but nice to have:

Certain applications, such as analytics, that require establishing a database. Build the database

once, run multiple queries against it

Collaborative workspaces

▪ Other characteristics may prove to be more valuable than persistence

15 OpenFabrics Alliance Workshop 2019

If the app doesn’t need persistence, then the so-called convergence of storage and memory is uninteresting

FOR EXAMPLE…

▪ Performance

• Persistence often comes at the cost of performance (but not always)

▪ Cost

• If you can accept a lower level of performance, or you do not care much about byte addressability,

there may be lower cost options available

▪ Capacity

• To achieve higher capacity, you might wish to use a different technology, sacrificing e.g. byte

addressability for higher capacity

16 OpenFabrics Alliance Workshop 2019

1ST ORDER TRADEOFF: LOCAL VS REMOTE

▪ Some requirements are met by siting persistent memory devices on the local compute node

Capacity-based applications

Some data protection usages

Replacement of local storage for performance reasons

▪ Others are only achieved by distributing persistent memory

Compute/memory disaggregation

independent scaling of compute and memory

Shared resource / shared data

Team collaboration

Distributed/Scale-out applications

17 OpenFabrics Alliance Workshop 2019

Needless to say, this is our
focus at the moment - RPM

Local may be synchronous, Remote is almost certain to be asynchronous

▪ Data Availability/Protection
Replicate local cache to RPM to achieve high availability

▪ Local System Performance

Eliminate disk accesses

▪ Scale Out Architectures
Scale out distributed databases, analytics applications, HPC parallel applications

▪ Scale Up Architectures

Scale up databases that exceed local memory capacity

▪ Disaggregated System Architectures
Compute capacity scales independently of memory capacity

▪ Shared Data
Support simultaneous data access to large teams

▪ Improved Uptime, Fast Restart

Quick server recovery following power cycle

Checkpoint restart

USE CASES – LOCAL PM

18 OpenFabrics Alliance Workshop 2019

Local Performance

Scale Up Architectures

Fast Restart

√√√

√

√√√

√√

√√√

√

√√

√√√

√

Persistence Performance Capacity

these need to be refined and
developed in much more detail

REMOTE PM – SYSTEM AND MEMORY MODELS

OpenFabrics Alliance Workshop 201919

Organized into pools,
accessed as memory

Can be configured as a flat address
space, or as object storage.

Or both.

NIC

CPU

DDR

NIC

CPU

DDR

NIC

CPU

DDR

. . .

NIC NICNIC

network

RPM
service
node

RPM
service
node

RPM
service
node

Shared or unshared resource

All will have a significant impact on the API

USE CASES – REMOTE PM

▪ Data Availability/Protection
Replicate local cache to RPM to achieve high availability

▪ Improved Uptime, Fast Restart
Quick server recovery following power cycle

Checkpoint restart

▪ Local System Performance
Eliminate disk accesses e.g. to stored databases

▪ Scale Out Architectures
Scale out distributed databases, analytics applications, HPC parallel applications

▪ Scale Up Architectures
Scale up databases that exceed local memory capacity

▪ Disaggregated System Architectures
Compute capacity scales independently of memory capacity

▪ Shared Data
Support simultaneous data access from multiple processes

A central shared repository for a distributed team collaborating on a large artifact

20 OpenFabrics Alliance Workshop 2019

DATA PROTECTION USE CASE

OpenFabrics Alliance Workshop 201921

What it looks like

How it works

Usage: replicate data that is stored in local PM

across a fabric and store it in remote PM

Data Availability √√√ √√ √

Persistence Performance Capacity

Checkpoint √√√ √√ √√

SCALE OUT USE CASE

OpenFabrics Alliance Workshop 201922

Usage: Expand on-node memory capacity, while taking

advantage of persistence (or not). Disaggregate memory

from compute.

remote
memory
service

PM

PM

PM

app

D
D

R

NIC

app

D
D

R

NIC

…

user Remote PM

completion

put

“Scalable Memory”

Scale Out

Disaggregation

√

√√

√√√

√√√

√√√

√√√

Persistence Performance Capacity

SHARED DATA USE CASE

OpenFabrics Alliance Workshop 201923

How it works

Usage: Information is shared among the

elements of a distributed application. Persistence

can be used to guard against node failure.

PM

app

NIC

app

NIC

Remote Shared
Memory Service

user

completion

user

put get

notice

Remote

PM

Shared Data √√ √√ √√√

Persistence Performance Capacity

SOME PRELIMINARY OBSERVATIONS

▪ Non-persistent use case don’t require flush semantics

▪ RPM is NUMA

▪ APIs for local vs remote PM are likely to be different, because of asynchronicity

▪ Capacity use cases likely have different access patterns than e.g. performance use
cases

• large reads / writes vs byte level accesses

▪ For persistence use cases, some should be ‘automatic’ e.g. Data Protection, others
should be ‘on-demand’

▪ Distinguish between the access method that the client sees vs the technology that is
implemented on the RPM node

• They are very different things

▪ Consider the chicken and the egg – it’s hard to predict what will be needed for new
application models

PM as an accelerator for existing application models, or

PM as an enabler of new application models

24 OpenFabrics Alliance Workshop 2019

NEXT STEPS

1. Commit the foregoing to text, allowing us to dig into the details

2. Begin thinking about what this implies for the API

25 OpenFabrics Alliance Workshop 2019

15th ANNUAL WORKSHOP 2019

THANK YOU

