

15th ANNUAL WORKSHOP 2019

TO HDR AND BEYOND

Ariel Almog, Software Architect Mellanox Technologies

March, 2019

NETWORK DATA RATE IS EXPANDING

Network data rate is duplicated every 3 years

- SDR 2.5 Gbps per lane, 2001
- DDR 5 Gbps per lane, 2005
- QDR 10 Gbps per lane, 2007
- FDR 14 Gbps per lane, 2011
- EDR 25 Gbps per lane, 2014
- HDR 50 Gbps per lane, 2018
- Each new rate exposes new types of modules

TYPES OF INTERCONNECT

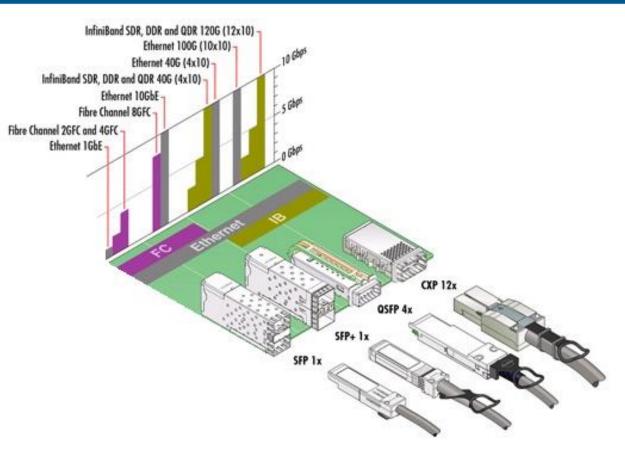
<u>Direct Attach Coax (DAC)</u>

Copper Wires. Directly Attaches one system to another *Key feature = Lowest Cost* Limit = 3m @ 25G rates

Optical Transceiver

Converts electrical signals to optical. Transmits blinking laser light over optical fiber. *Key feature = long reach*. Limit = Higher cost, higher power

> "Transceiver" 1/4/8-chennels Transmit 1/4/8-channels Receiver


Active Optical Cable

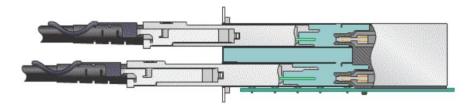
2 Transceivers with optical fiber glued in. *Key feature = Lowest Cost Optical* Limit = 100m

4X/1X FORM FACTORS

- Defined by SFF Committee / MSA (Multiple :
- QSFP Quad Small Formfactor Pluggable
 - 4 electrical lanes
 - QSFP28 : 25G-28G per channel
 - QSFP+ : 10G-14G per channel
- SFP Small Formfactor Pluggable
 - 1 electrical lane
 - SFP28 : 25G per channel
 - SFP+ : 10G per channel

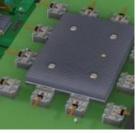
FORM FACTORS – WHAT'S NEW

QSFP-DD (QSFP Double Density)


- 8X electrical lanes connector
- Backward compatible to QSFP modules
- Up to 12W, 36 in 1U

OSFP (Octal Small Form Factor Pluggable)

- 8X electrical lanes connector
- Wider than QSFP
- Up to 15W, 36 in 1U

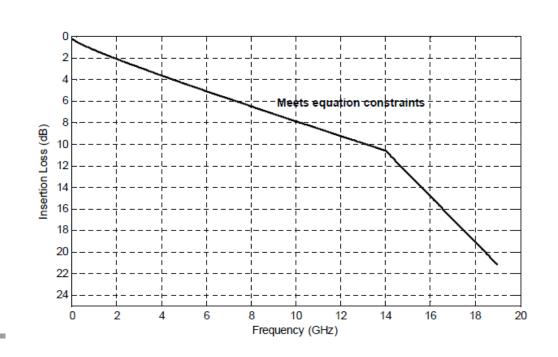

COBO (Consortium for On-Board Optics)

- 8x on board optics
- All 3 form factor target to share the same management interface
- QSFP-DD showed already POCs of systems, copper
- Other
 - QSFP / SFP will be used also for 50G/lane (based on QSFP28/SFP28)
 - SFP-DD recently initiated
 - uQSFP up to 5W, 4 lanes, 72 in 1U (SFP width)

COPPER CABLES – DAC (DIRECT ATTACH CABLE)

"Simple" copper connection between two ends of the link.

- No active electronics or optics simplest construction
- Zero power consumption no active elements


Copper cables properties:

- AWG (American wire gauge)
 - 26 AWG
 - 28 AWG
 - 30 AWG
- Attenuation / loss
 - In dB units per frequency
- Cable Length
 - For EDR up to 5m (typical 3m)
 - For HDR / 200GE up to 3m (2m in IB spec)

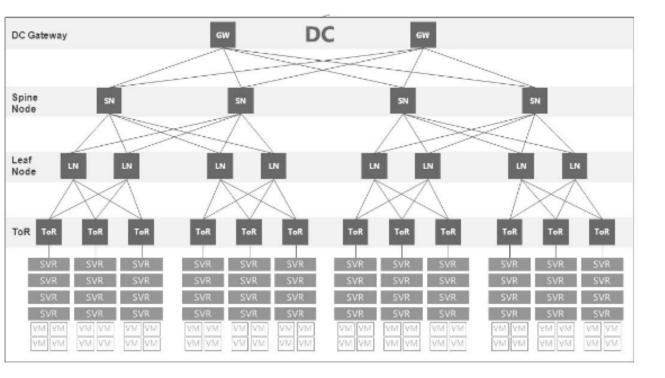
Copper cables frequency response limits

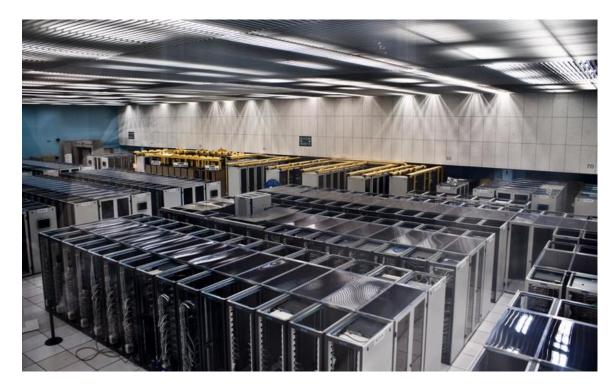
Can support rates below the max rate*

COPPER CABLES – DAC (DIRECT ATTACH CABLE)

- Straight Copper configurations:
 - QSFP28 <-> QSFP28
 - SFP28 <-> SFP28
 - QSFP-to-SFP port adapters & cables

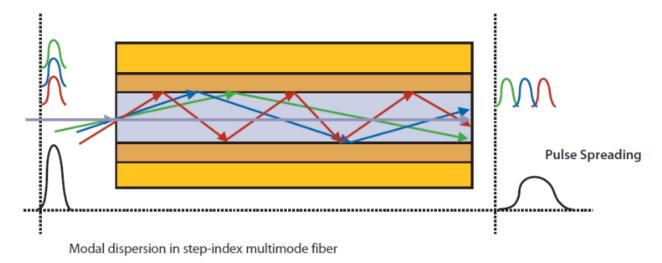
- Copper cable has an EEPROM
 - Identification
 - Vendor Name
 - Part Number
 - Serial Number
 - Date of production
 - Max supported rate
 - Length
 - Attenuation
 - Near-End / Far-End configuration

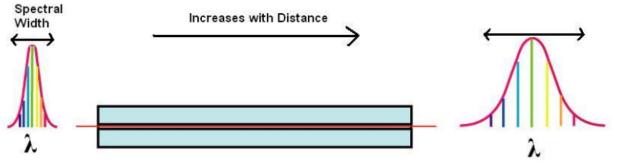



- Splitter configurations:
 - QSFP28 <-> 2 x QSFP28 (half populated)
 - QSFP28 <-> 4 x SFP28

WHY IS OPTICAL COMMUNICATION NEEDED

Reach - Typical datacenter layout


- Minimum reach inside the rack (between TOR to HCA) 3m
- Between racks to 'Leaf' switch up to 30m
- Between Leaf switch to Spine switch up to 100m



MULTIMODE VS SINGLEMODE

 Modal dispersion – each mode propagates in a different speed through the core => Pulse spreading.

 Chromatic dispersion – light source is never monochromatic. Each color propagates at a different speed

MULTIMODE VS SINGLEMODE

Parameter	Multimode	Singlemode
Dispersion	Modal + Chromatic	Chromatic only
Light coupling	Easy	Challenging
Fiber cost	A bit higher	A bit lower
Light source cost	Lower	Higher
Typical wavelength	850 nm	1310 nm / 1550 nm
Overall transceiver cost	Lower	Higher
Reach	100s of meters	Many KMs
WDM	Yes*	Yes

KEY PARAMETERS OF OPTICAL TRANSCEIVER

BER – Bit Error Rate

- Bit Error = deciding on '0' when actually '1' was transmitted (or vise versa)
- BER = what is the ratio between bit errors and good bits
- Typical BER requirement is 10⁻¹² (1 error in every 10¹² transmitted bits)
- Optical Link budget defines the optical power we have to spare while keeping a minimum BER requirement.

FEC – Forward Error Correction

- Adds extra/redundant information to a transmission so that a receiver can " recover " from small errors
- Today, done at the host only, not in the transceiver
- Costs latency (more processing to do on the bit stream, even when there are no error)

ETHERNET PROTOCOLS CONVENTIONS

XXX BASE-MEN

XXX - MAC speed:

• 10 / 50 / 100 / 200 / 400

• M - Media type:

• C - copper, K - backplane, S - MMF optics, L - 10km SMF optics, D - 500m SMF optics, F - 2km SMF

E - Encoding:

R – 64/66 (and all new protocols), X – 8/10 encoding (1G / legacy 10G "XAUI")

N – Number of physical (PMA) lanes

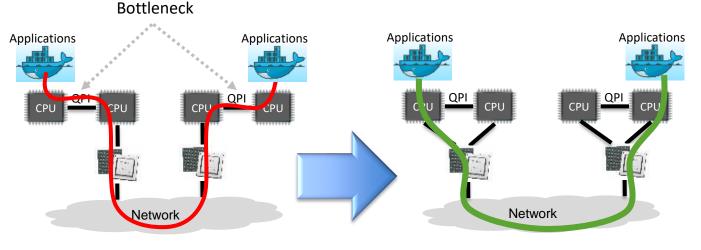
- 1 (not written) / 2 / 4 / 8
- Examples: 100GBASE-SR4, 400GBASE-DR4, 25GBASE-CR
- AUIs:
 - chip⇔module / chip⇔chip: 25GAUI, 400GAUI-8, CAUI-4
- Most protocol names follow the above scheme, however spec wise it's just a name.

ETHERNET PROTOCOLS (BUT THERE ARE MANY MORE...)

	Phy (PMD)	Description	Number of wavelengths	Number of Fibers / Copper channels per RX/TX
Passive	50GBASE-CR	Copper up to 3m	-	1 pairs
	100GBASE-CR2		-	2 pairs
	100GBASE-CR4		-	4 pairs
	200GBASE-CR4		-	4 pairs
MMF*	50GBASE-SR	50G per λ	1	1
	100GBASE-SR2	50G per λ parallel	2	2
	200GBASE-SR4	50G per λ parallel	4	4
SMF 500m	100GBASE-DR	100G per λ	1	1
	200GBASE-DR4	50G per λ PSM4	4	4
	400GBASE-DR4	100G per λ PSM4	4	4
SMF 2km-10km	50GBASE-FR / LR	50G per λ	1	1
	200GBASE-FR4 / LR4	50G per λ WDM4	4	1
	400GBASE-FR8 / LR8	50G per λ WDM8	8	1

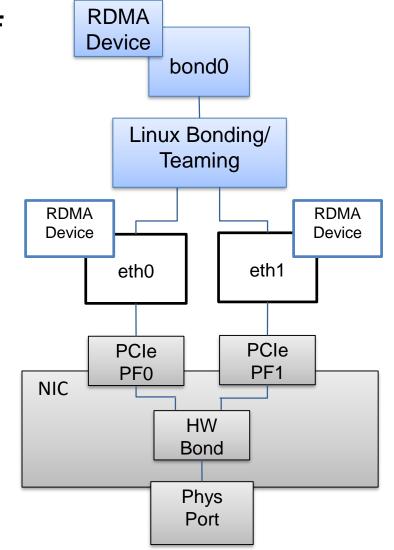
EXPOSING NEW MODULE IN OS

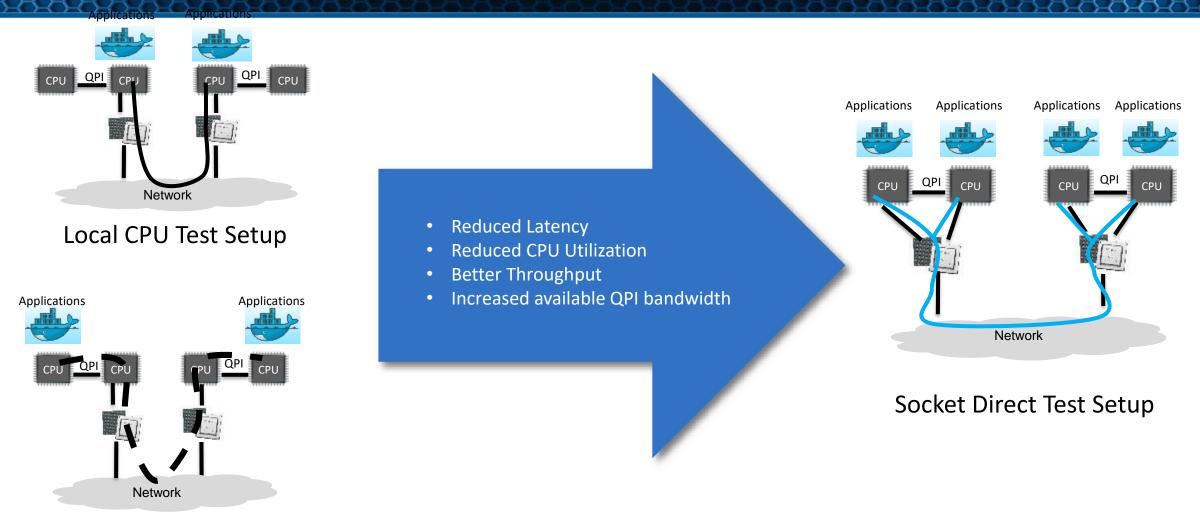

• Linux configuration is done through ethtool


- Ethernet interfaces and partial support in Infiniband
- ethtool -s devname speed N [duplex half|full] [port tp|aui|bnc|mii] [autoneg on|off] [advertise N]
 - Current appearance shall be changed as It doesn't scale
 - For example, for 200 Gbs (4 * 50) around 20 permutation can be found
 - AN and advertised is limited
 - Duplex
- --eeprom-dump
 - Support for e2prom parsing for new type of msa
- Other OSs (Windows, freebsd)

arr adverbroed modeb prob[] ETHTOOL LINK MODE 10baseT Half BIT, ETHTOOL_LINK_MODE_10baseT_Full_BIT, ETHTOOL LINK MODE 100baseT Half BIT, ETHTOOL_LINK_MODE_100baseT_Full_BIT, ETHTOOL_LINK_MODE_1000baseT_Half_BIT, ETHTOOL LINK MODE 1000baseT Full BIT, ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, ETHTOOL_LINK_MODE_2500baseX Full BIT, ETHTOOL LINK MODE 10000baseT Full BIT, ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, ETHTOOL_LINK_MODE_20000baseMLD2_Full_BIT, ETHTOOL LINK MODE 20000baseKR2 Full BIT, ETHTOOL LINK MODE 40000baseKR4 Full BIT, ETHTOOL_LINK_MODE_40000baseCR4 Full BIT, ETHTOOL_LINK_MODE_40000baseSR4 Full BIT, ETHTOOL LINK MODE 40000baseLR4 Full BIT, ETHTOOL LINK MODE 56000baseKR4 Full BIT, ETHTOOL_LINK_MODE_56000baseCR4_Full_BIT, ETHTOOL LINK MODE 56000baseSR4 Full BIT, ETHTOOL_LINK_MODE_56000baseLR4_Full_BIT, ETHTOOL LINK MODE 25000baseCR Full BIT, ETHTOOL LINK MODE 25000baseKR Full BIT, ETHTOOL LINK MODE 25000baseSR Full BIT, ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT, ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT, ETHTOOL LINK MODE 100000baseKR4 Full BIT, ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT, ETHTOOL LINK MODE 100000baseCR4 Full BIT, ETHTOOL LINK MODE 100000baseLR4 ER4 Full BIT, ETHTOOL LINK MODE 50000baseSR2 Full BIT, ETHTOOL_LINK_MODE_1000baseX_Full_BIT, ETHTOOL_LINK_MODE_10000baseCR_Full_BIT, ETHTOOL LINK MODE 10000baseSR Full BIT, ETHTOOL LINK MODE 10000baseLR Full BIT, ETHTOOL LINK MODE 10000baseLRM Full BIT, ETHTOOL_LINK_MODE_10000baseER_Full_BIT, ETHTOOL LINK MODE 2500baseT Full BIT,

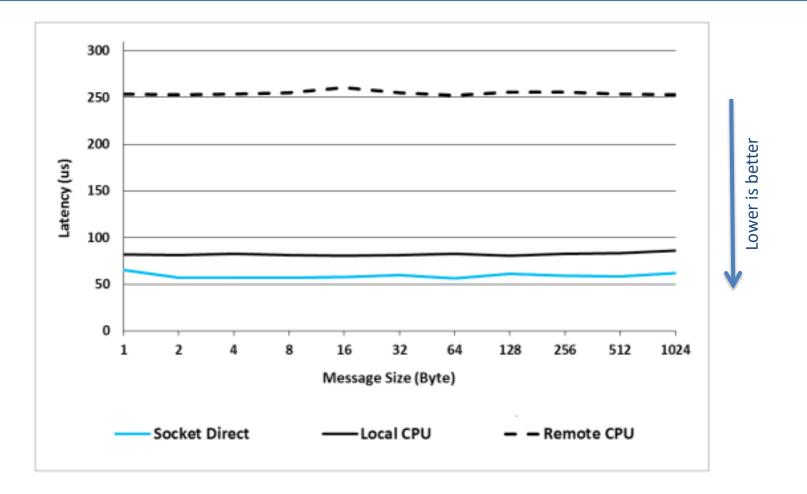
CONNECTX-5 SOCKET DIRECT - SYSTEM USAGE


- 100Gb/s network adapters
 - Use two PCIe x8 slots
 - Adapter and PCI extender connected by harness
- Both CPU's directly connect to the network
 - Improved performance
 - Enables GPU / peer direct on both slots
- Each PCIe bus is connected through different NUMA node
- For OS, exposed as 2 or more net_device each with it's own associated RDMA device
- Application enjoy direct device to local NUMA access
- Ordering OPN
 - MCX556M-ECAT_S25
 - MCX556M-ECAT_S35A
 - With active auxiliary card

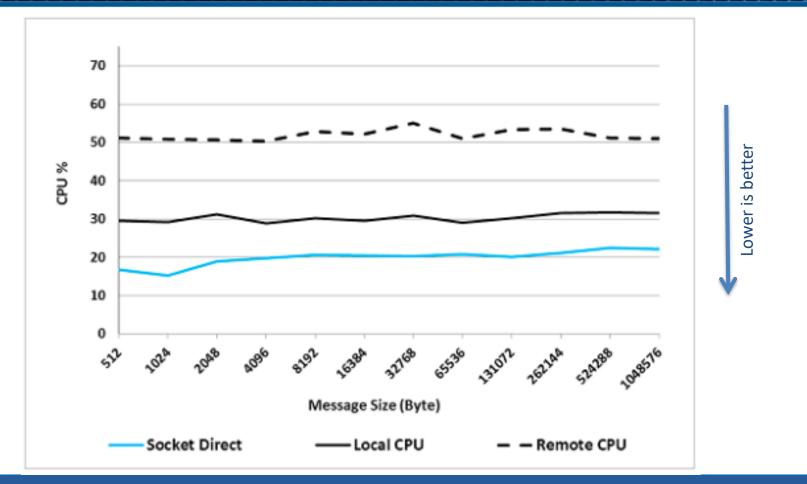


MULTI-PCI SOCKET NIC - TRANSPARENCY TO THE APP

- Application use & feel would like to work with single net I/F
- Use Linux bonding with RDMA device bonding
- For TCP/IP traffic
 - On TX, select slave according to TX queue affinity
 - On RX, use accelerated RFS to educate the NIC which slave to use per flow
- For RDMA/User mode ETH (Verbs/DPDK) traffic select slave according to:
 - Explicit Transport object (QP) logical port create affinity attribute
 - Or transport object creation thread CPU affinity attribute
 - QPn namespace is divided across slaves
 - On receive use QPn to slave mapping
 - From BTH or from Flow Steering action
- Don't share HW resources (CQ, SRQ) on different CPU sockets
 - each device has it's own HW resources

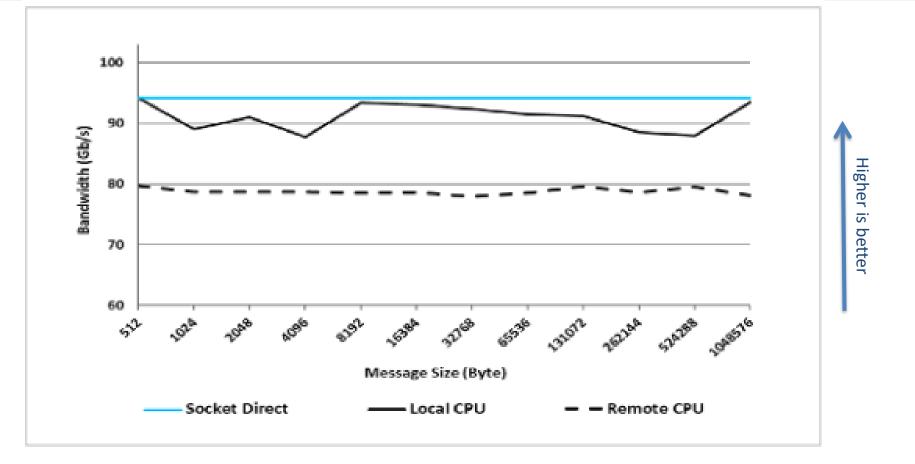


MULTI-HOST SOCKET DIRECT[™] BENCHMARKS



Remote CPU Test Setup

SOCKET DIRECT ADAPTER – AVERAGE LATENCY



SOCKET DIRECT ADAPTER – CPU UTILIZATION

Up to 50% CPU Utilization Improvement

SOCKET DIRECT ADAPTER – NETWORK THROUGHPUT

16% Network Throughout Improvement

BENCHMARK SETUP DETAILS

Component	Description	
Gen3 System	Dell PowerEdge R730	
CPU	Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz	
Number of cores	24	
Distribution name	Red_Hat_Enterprise_Linux_Server_release_7.3	
Driver version	MLNX_OFED_LINUX-4.0-0.1.2.0	
Firmware	12.18.1000	
MTU	1500B	
PCIe	Gen3	
Width	x16 / x8	
Mellanox adapter	ConnectX-4 MCX456A-ECAT / MCX456M-ECAT	

15th ANNUAL WORKSHOP 2019

THANK YOU

Ariel Almog, Software Architect Mellanox Technologies

