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AGENDA

▪ Introduction to distributed machine learning training

▪ Distributed machine learning training stack

▪ NCCL and its integration with libfabric

▪ Performance impact of running EFA for machine learning

▪ Deploying at scale – learnings and challenges
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INTRODUCTION
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DISTRIBUTED MACHINE LEARNING TRAINING

▪ Supervised Machine learning (ML) training

• Train a model to determine optimal values for all the weights and bias from labelled examples

• Apply learnt model to infer results for new real world data

• Some applications: Image and Speech recognition, classification, prediction

▪ Size of ML models is growing way faster than Moore’s law

• One of most popular ML algorithm (BERT) takes more than 9 days to train on biggest available single server

▪ Meanwhile, ML researchers and commercial users are looking for results and 

experiments in hours, not days

▪ Solution: Run distributed ML training with Data Parallelism

• Same model, different training samples
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SYNCHRONOUS STOCHASTIC GRADIENT DESCENT (SGD)

• Iterative algorithm to calculate optimal training parameters

• Results of each round is incorporated into the model for the next round.

• Applies to only set of inputs called as mini-batch
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DISTRIBUTED ML TRAINING IN REAL LIFE 

▪ Ideal goal:  Scale linearly with number of GPU servers

▪ Catch: You need to balance Time-to-Converge while scaling the Teraflops

▪ Classic trade-off:

➔ Idea: A faster and lower latency interconnect allows scaling to large number of nodes 
while keeping short epoch

• Or allows model to converge faster for same number of nodes by offering lower communication per compute
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DISTRIBUTED ML STACK
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DISTRIBUTED ML TRAINING ARCHITECTURE IN AWS
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USING LIBFABRIC WITH NCCL

▪ Why NCCL?

• Multi-GPU and Multi-node collective communication primitives

• Provides routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter

• Performance optimized for NVIDIA GPUs

▪ NCCL collective communication flow

• Determines system topology for efficient communication

• Builds collective operations topology like ring, double binary tree

• Schedules CUDA kernels on GPU which reduces and moves the data

▪ AWS OFI NCCL

• Open source plug in which enables to use libfabric as a network provider while running NCCL based applications

• Enables to use Elastic Fabric Adapter (EFA) on AWS EC2 cloud
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ELASTIC FABRIC ADAPTER

▪ Libfabric provider optimized for high performance and machine learning workloads

▪ Low latency for inter node communication in cloud

▪ Scales to thousands of CPUs / GPUs

▪ Bypasses operating system

▪ Uses underlying Scalable Reliable Datagram Protocol

▪ To learn more: https://aws.amazon.com/hpc/efa/
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PERFORMANCE RESULTS
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PERFORMANCE BENCHMARKS

▪ BERT training

• Dataset by NVIDIA - concatenation of Wikipedia as well as Book Corpus

• Gradient accumulation to simulate larger batch size

• Smaller sequence length and higher batch size to speed up the training

• Throughput Scaling efficiency: 87% - Scale training time from 9 days to <1 hour

• EFA improves training time by 2X for a cluster of 256 GPUs vs TCP

▪ Maskrcnn Training for Object Detection

• Used COCO dataset

• Configured model hyperparameters for different system scale.

• EFA outperformed TCP at all scales, processing >1000 images/second with 192 GPUs
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TRAINING TIME IMPROVEMENT WITH BERT
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9 days, 8 hours

1 hour



PERFORMANCE IMPROVEMENT WITH MASKRCNN
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DEPLOYING AT SCALE
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LEARNING FROM DEMANDING CUSTOMER WORKLOADS

▪ Working with customers running different ML models for training

• Spanning from 8 GPUs to 1200 GPUs

• Using different ML frameworks like PyTorch, MxNet and Tensorflow

▪ P3DN servers

• Complex instances built for running ML training at scale

• More than 5kW per each server, 1TB of DRAM, 10 chips with 200Watt+ each and 100s of billions of transistors in 

one chip

• Careful design for reliability

▪ Successful multi day trainings with consistent performance, reliability, and no hick-ups

• Robust testing and qualification of all software stack: Drivers / Kernel / NCCL / LibFabric / ML Framework

• Non distributive firmware updates

• Robust power and network delivery

• Developed auto-recovery mechanisms to recover from transient failures like GPU memory errors
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BEST PRACTICES FOR SCALE

▪ Know your software stack

• Challenge: Many components involved and small bugs magnify at scale

• Fast moving code which addresses these bugs

• Use latest NVIDIA toolkit, OS distribution etc.

▪ Choose appropriate hardware / services

• Challenge: Highly demanding and resource intensive applications.

• Make sure you’re sizing appropriately to avoid bottlenecks

• Amazon FSx for lustre, EC2 Hardware, VPC and 100G EFA

▪ Design for robustness

• Challenge: Complicated components and applications which are sensitive to failure

• Add capability to snapshot and restart from saved checkpoint. Eg: ParallelCluster with Slurm

• AWS monitors hardware components for failure and recovers automatically. Adding similar monitoring 

and resiliency for VMs is also helpful.
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SUMMARY

▪ Lower latency interconnect allows distributed ML models to converge faster

▪ EFA and libfabric enables fast, low latency communication

▪ Order of magnitude improvements in scalability compared to a TCP networking 

stack

▪ Running demanding ML applications at scale requires:

• Careful hardware sizing

• Failure tolerance

• Keeping up to date with latest versions
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