
USING LIBFABRIC FOR SCALABLE DISTRIBUTED MACHINE LEARNING:

USE CASES, LEARNINGS, AND BEST PRACTICES

Rashika Kheria, Senior SDE

Amazon Web Services

June, 2020

2020 OFA Virtual Workshop

AGENDA

▪ Introduction to distributed machine learning training

▪ Distributed machine learning training stack

▪ NCCL and its integration with libfabric

▪ Performance impact of running EFA for machine learning

▪ Deploying at scale – learnings and challenges

2 © OpenFabrics Alliance

INTRODUCTION

3 © OpenFabrics Alliance

DISTRIBUTED MACHINE LEARNING TRAINING

▪ Supervised Machine learning (ML) training

• Train a model to determine optimal values for all the weights and bias from labelled examples

• Apply learnt model to infer results for new real world data

• Some applications: Image and Speech recognition, classification, prediction

▪ Size of ML models is growing way faster than Moore’s law

• One of most popular ML algorithm (BERT) takes more than 9 days to train on biggest available single server

▪ Meanwhile, ML researchers and commercial users are looking for results and

experiments in hours, not days

▪ Solution: Run distributed ML training with Data Parallelism

• Same model, different training samples

4 © OpenFabrics Alliance

SYNCHRONOUS STOCHASTIC GRADIENT DESCENT (SGD)

• Iterative algorithm to calculate optimal training parameters

• Results of each round is incorporated into the model for the next round.

• Applies to only set of inputs called as mini-batch

5 © OpenFabrics Alliance

Barrier

GPU0 GPU1 GPU255

Mini Batch 0
Mini Batch

255
Mini Batch 1

1. Send local gradients
1. Send local gradients

1. Send local gradients

2. Wait for gradients from all GPUs

3. Update model and send it to
all GPUs before next round

DISTRIBUTED ML TRAINING IN REAL LIFE

▪ Ideal goal: Scale linearly with number of GPU servers

▪ Catch: You need to balance Time-to-Converge while scaling the Teraflops

▪ Classic trade-off:

➔ Idea: A faster and lower latency interconnect allows scaling to large number of nodes
while keeping short epoch

• Or allows model to converge faster for same number of nodes by offering lower communication per compute

6 © OpenFabrics Alliance

Compute per epoch Pros Cons

Large Reduce communication
overhead per compute

Slower convergence time

Short Faster convergence time Higher communication
overhead per compute

DISTRIBUTED ML STACK

7 © OpenFabrics Alliance

DISTRIBUTED ML TRAINING ARCHITECTURE IN AWS

8 © OpenFabrics Alliance

NCCL

AWS OFI NCCL

Libfabric

EFA

Bert MaskRCNN ML Training ModelsJasper

ML Training Frameworks

Collective Communication
Primitives

Networking

Transformer

EC2 Hardware Infrastructure

DISTRIBUTED ML TRAINING ARCHITECTURE IN AWS

9 © OpenFabrics Alliance

NCCL

AWS OFI NCCL

Libfabric

EFA

Bert MaskRCNN ML Training ModelsJasper

ML Training Frameworks

Collective Communication
Primitives

Networking

Transformer

EC2 Hardware Infrastructure

DISTRIBUTED ML TRAINING ARCHITECTURE IN AWS

9 © OpenFabrics Alliance

NCCL

AWS OFI NCCL

Libfabric

EFA

Bert MaskRCNN ML Training ModelsJasper

ML Training Frameworks

Collective Communication
Primitives

Networking

Transformer

EC2 Hardware Infrastructure

USING LIBFABRIC WITH NCCL

▪ Why NCCL?

• Multi-GPU and Multi-node collective communication primitives

• Provides routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter

• Performance optimized for NVIDIA GPUs

▪ NCCL collective communication flow

• Determines system topology for efficient communication

• Builds collective operations topology like ring, double binary tree

• Schedules CUDA kernels on GPU which reduces and moves the data

▪ AWS OFI NCCL

• Open source plug in which enables to use libfabric as a network provider while running NCCL based applications

• Enables to use Elastic Fabric Adapter (EFA) on AWS EC2 cloud

10 © OpenFabrics Alliance

ELASTIC FABRIC ADAPTER

▪ Libfabric provider optimized for high performance and machine learning workloads

▪ Low latency for inter node communication in cloud

▪ Scales to thousands of CPUs / GPUs

▪ Bypasses operating system

▪ Uses underlying Scalable Reliable Datagram Protocol

▪ To learn more: https://aws.amazon.com/hpc/efa/

11 © OpenFabrics Alliance

PERFORMANCE RESULTS

12 © OpenFabrics Alliance

PERFORMANCE BENCHMARKS

▪ BERT training

• Dataset by NVIDIA - concatenation of Wikipedia as well as Book Corpus

• Gradient accumulation to simulate larger batch size

• Smaller sequence length and higher batch size to speed up the training

• Throughput Scaling efficiency: 87% - Scale training time from 9 days to <1 hour

• EFA improves training time by 2X for a cluster of 256 GPUs vs TCP

▪ Maskrcnn Training for Object Detection

• Used COCO dataset

• Configured model hyperparameters for different system scale.

• EFA outperformed TCP at all scales, processing >1000 images/second with 192 GPUs

13 © OpenFabrics Alliance

TRAINING TIME IMPROVEMENT WITH BERT

14 © OpenFabrics Alliance

9 days, 8 hours

1 hour

PERFORMANCE IMPROVEMENT WITH MASKRCNN

15 © OpenFabrics Alliance

DEPLOYING AT SCALE

16 © OpenFabrics Alliance

LEARNING FROM DEMANDING CUSTOMER WORKLOADS

▪ Working with customers running different ML models for training

• Spanning from 8 GPUs to 1200 GPUs

• Using different ML frameworks like PyTorch, MxNet and Tensorflow

▪ P3DN servers

• Complex instances built for running ML training at scale

• More than 5kW per each server, 1TB of DRAM, 10 chips with 200Watt+ each and 100s of billions of transistors in

one chip

• Careful design for reliability

▪ Successful multi day trainings with consistent performance, reliability, and no hick-ups

• Robust testing and qualification of all software stack: Drivers / Kernel / NCCL / LibFabric / ML Framework

• Non distributive firmware updates

• Robust power and network delivery

• Developed auto-recovery mechanisms to recover from transient failures like GPU memory errors

17 © OpenFabrics Alliance

BEST PRACTICES FOR SCALE

▪ Know your software stack

• Challenge: Many components involved and small bugs magnify at scale

• Fast moving code which addresses these bugs

• Use latest NVIDIA toolkit, OS distribution etc.

▪ Choose appropriate hardware / services

• Challenge: Highly demanding and resource intensive applications.

• Make sure you’re sizing appropriately to avoid bottlenecks

• Amazon FSx for lustre, EC2 Hardware, VPC and 100G EFA

▪ Design for robustness

• Challenge: Complicated components and applications which are sensitive to failure

• Add capability to snapshot and restart from saved checkpoint. Eg: ParallelCluster with Slurm

• AWS monitors hardware components for failure and recovers automatically. Adding similar monitoring

and resiliency for VMs is also helpful.

18 © OpenFabrics Alliance

SUMMARY

▪ Lower latency interconnect allows distributed ML models to converge faster

▪ EFA and libfabric enables fast, low latency communication

▪ Order of magnitude improvements in scalability compared to a TCP networking

stack

▪ Running demanding ML applications at scale requires:

• Careful hardware sizing

• Failure tolerance

• Keeping up to date with latest versions

19 © OpenFabrics Alliance

THANK YOU
Rashika Kheria, Senior SDE

Amazon Web Services

(rashika@amazon.com)

2020 OFA Virtual Workshop

