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APACHE SPARK

Leading Framework for Distributed, Scale-Out Data Analytics

100s of 1000s of data Data Processing
scientists and over Requirement
16,000 enterprises use
Spark

Spark is 100x faster at

rocessing data than
Eladoop <’\z

Spark’

1000+ contributors
across 250+ companies

Databricks platform
alone spins up 1 million
virtual machines per day

2000 2010 2020
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HADOOP’S MAPREDUCE VS. APACHE SPARK

= Spark’s in-memory model completely
changed how shuffle is done

= |n both Spark and Hadoop, map output is
saved on the local disk

= |[n Hadoop, map output is then copied over

the network to the destined reducer’s local | v
disk

= |n Spark, map output is fetched from the Sporf(z . *Q”*"

network, on-demand, to the reducer’s
memory

Memory-to-network-to-memory? RDMA/RoOCE Is a perfect fit.
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SPARK’S SHUFFLE BASICS
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THE COST OF SHUFFLING

= Shuffling is very expensive in terms of CPU, RAM, disk and network

= Spark users try to avoid shuffles as much as they can

= Speedy shuffles can relieve developers of such concerns, and simplify applications
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MELLANOX SPARK SHUFFLE ACCELERATION

2017 SparkRDMA shuffle plugin open sourced https://github.com/Mellanox/SparkRDMA

Based on disni library (thin wrapper over verbs)

Promote RDMA technology in Spark community (Al Spark summit talks Accelerating Shuffle: A Tailor-Made RDMA
Solution for Apache Spark, Accelerated Spark on Azure: Seamless and Scalable Hardware Offloads in the Cloud)

Initial customers POC, collected requirements and feedback.

2019 SparkUCX shuffle plugin https://github.com/openucx/sparkucx
Java wrapper for UCX library implementation
Fixes architectural bottlenecks in SparkRDMA

2020 Nvidia Rapids for Spark (to be open sourced)
Based on UCX java library for communication
GPU + RDMA acceleration
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https://github.com/Mellanox/SparkRDMA
https://databricks.com/session/accelerating-shuffle-a-tailor-made-rdma-solution-for-apache-spark
https://databricks.com/session/accelerated-spark-on-azure-seamless-and-scalable-hardware-offloads-in-the-cloud
https://github.com/openucx/sparkucx

r.Du_.l UNIFIED COMMUNICATION X (UCX)
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UCX

= UCXis a framework for network APIs and stacks

= UCX aims to unify the different network APIs, protocols and implementations into a
single framework that is portable, efficient and functional

= UCX doesn’t focus on supporting a single programming model, instead it provides
APIls and protocols that can be used to tailor the functionalities of a particular
programming model efficiently

= When different programming paradigms and applications use UCX to implement their
functionality, it increases their portability. As just implementing a small set of UCX APlIs
on top of a new hardware ensures that these applications can run seamlessly without
having to implement it themselves
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UCX GOALS

Unified API Focus on performance Production quality

Applications driven, simple,

Fast, scalable, highl it ing,
extendable, HW-agnostic ghly Multi-tier testing, used by

optimized low latency high top Mellanox customers in
bandwidth messaging production
framework

Open source Innovation Multi arch/transports

Collaboration between Concepts and ideas from RoCE, InfiniBand, Cray, TCP,
industry, laboratories, and research in academia and shared memory, GPUs, x86,
academia industry ARM, POWER

Co-design of Network APIs
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UCX GOALS

Applications

UCP — High Level API (Protocols)
Transport selection, multi-rail, fragmentation

HPC API: 110 API: Connection establishment:
tag matching, active messages Stream, RPC, remote memoryaccess, atomics client/server, external

UCT — Low Level API (Transports)

GPU / Accelerators

‘ RC H DCT J ‘ uD H iWarp J ‘ CUDA J ‘ AMD;’ROCMJ

2
Hardware
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UCX OVERVIEW

= APIs

Socket-like stream send/receive, RPC

* Remote memory access and atomic operations

Client/server connection establishment

Fully non-blocking

= Advanced features

Full support for GPU and GPU Direct

Multi-rail and fault tolerance

Direct verbs for minimal software overhead

Thread-safety with separate resources per-thread

Interrupt and polling-based progress

Smart data transfer protocols (eager, rendezvous, bcopy, zcopy, ...)
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APACHE SPARK + UCX = ACCELERATED SHUFFLE
0
=]
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SHUFFLE MANAGER PLUGIN

= Spark allows for external implementations of
ShuffleManagers to be plugged in S
* Configurable per-job using: “spark.shuffle. manager” pQ

" The plugin interface allows proprietary implementations
of Shuffle Writers and Readers, and essentially defers _

K’

the entire Shuffle process to the new component

= SparkUCX utilizes this interface to introduce RDMA in J\z
the Shuffle process SprK
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SPARK+UCX OPERATION FLOW

= |nitialization:
* Spark driver allocates global metadata buffer per shuffle stage, to hold addresses and memory keys of data
and index files on mappers.

= Mapper phase:
°* mmap() and register index and data files
* Publish {address, rkey} to driver metadata buffer (ucp_put).

= Reduce phase:
* Fetch metadata from driver (ucp_get)

* For each block:
» Fetch offset in data file, from index file (ucp_get).
 Fetch block contents from data file (ucp_get).
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JUCX API EXAMPLE IN SPARK

1. Instantiate ucp context:

UcpConetxt context = new UcpContext(new UcpParams().requestRmaFeature());

2. Reqgister memory on context:

UcpMemory memoryRegion = context.memoryMap(new UcpMemMapParams().setLength(length).allocate())

3. Instantiate ucp worker:

UcpWorker worker = context.newWorker(new UcpWorkerParams().setCpu(0).requestWakeupRMA());

4. Instantiate ucp endpoint:

UcpEndpoint endpoint = worker.newEndpoint(hew UcpEndpointParams().setSocketAddress(InetSocketAddress("1.2.3.4:1234"));

5. Perform get/put/send/recv operation on endpoint:

UcxRequest request = endpoint.getNonBlocking(remoteAddress, remoteKey, localBuffer, callback);

6. Progress request until it's completed:

worker.progressRequest(request)
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SPARK+UCX BENEFITS

= Accelerating Spark

* Lower Block transfer times (latency and total
transfer time)

* Lower Memory consumption and management
* Lower CPU utilization
* GPU Direct

= Easy to deploy and configure
* Packed into a single JAR file

° Plugin is enabled through a simple configuration
handle

* Allows finer tuning with a set of configuration
handles

= Configuration and deployment are on a
per job basis
* Can be deployed incrementally
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SPARK SHUFFLE PERFORMANCE (CPU)

Using default TCP vs SparkUCX (RoCE)

Benchmarks: Terasort + Pagerank (0N 4 ROCE:

* https://github.com/Intel-bigdata/HiBench

Terasort:

* 1.2 TB input, 10K mappers, 15k reducers
Pagerank:

100 GigE

* Bigdata Hibench workload (600 Gb), 5K mappers, 15K reducers
15 nodes: Broadwell @ 2.60GHz, 250GB RAM, 500GB HDD
ConnectX-5: Infiniband: 100G EDR. TCP device: IPoIB 100G

Red Hat Enterprise Linux Server release 7.5 (Maipo)
(kernel: 3.10.0-862.el7.x86_64)

MLNX_OFED_LINUX-4.6-1.0.1.1.

Spark-2.4.3, Hadoop-2.9.2, UCX v1.8.0

Deployment guide:
https://docs.mellanox.com/pages/releaseview.action?pagel
d=19819236

Worker 2
Management §
Network
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https://github.com/Intel-bigdata/HiBench
https://docs.mellanox.com/pages/releaseview.action?pageId=19819236

SPARK SHUFFLE PERFORMANCE (CPU)

Using default TCP vs SparkUCX (RoCE)

Terasort Pagerank
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Stageld - Description TCP Duration  |Tasks: Succeeded/Total Input Qutput  Shuffle Read Shuffle Write
1 count at TeraSort.scala: 153 +details 2019/10/10 17:05:05 2.3 min 15000/15000 1777.0 GB
Stageld ~ Description ch Duration Tasks: Succeeded/Total Input Output  Shuffle Read Shuffle Write
1 count at TeraSort.scala:153 +details 2019/10/10 17:13:32 1.4 min 15000/15000 1777.0 GB
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SPARK SHUFFLE PERFORMANCE GPU
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https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22674-accelerating-apache-spark-3.0-
with-rapids-and-gpus.pdf
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https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22674-accelerating-apache-spark-3.0-with-rapids-and-gpus.pdf
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Peter Rudenko, software engineer



