2020 OFA Virtual Workshop

SPARKUCX - RDMA ACCELERATION PLUGIN FOR SPARK

Peter Rudenko, software engineer

APACHE SPARK

2 © OpenFabrics Alliance

APACHE SPARK

Leading Framework for Distributed, Scale-Out Data Analytics

100s of 1000s of data Data Processing
scientists and over Requirement
16,000 enterprises use
Spark

Spark is 100x faster at

rocessing data than
Eladoop <’\z

Spark’

1000+ contributors
across 250+ companies

Databricks platform
alone spins up 1 million
virtual machines per day

2000 2010 2020

3 © OpenFabrics Alliance

HADOOP’S MAPREDUCE VS. APACHE SPARK

= Spark’s in-memory model completely
changed how shuffle is done

= |n both Spark and Hadoop, map output is
saved on the local disk

= |[n Hadoop, map output is then copied over

the network to the destined reducer’s local | v
disk

= |n Spark, map output is fetched from the Sporf(z . *Q”*"

network, on-demand, to the reducer’s
memory

Memory-to-network-to-memory? RDMA/RoOCE Is a perfect fit.

4 © OpenFabrics Alliance

Map

Reduce

SPARK’S SHUFFLE BASICS

Map

Map

Map

Map

Map

Reduce task

Fetch blocks

Reduce task

Fetch blocks

Reduce task

Fetch blocks

Reduce task

Fetch blocks

Reduce task

Fetch blocks

Map output

IlIIl‘_l T
} I I

Master

© OpenFabrics Alliance

THE COST OF SHUFFLING

= Shuffling is very expensive in terms of CPU, RAM, disk and network

= Spark users try to avoid shuffles as much as they can

= Speedy shuffles can relieve developers of such concerns, and simplify applications

6 © OpenFabrics Alliance

MELLANOX SPARK SHUFFLE ACCELERATION

2017 SparkRDMA shuffle plugin open sourced https://github.com/Mellanox/SparkRDMA

Based on disni library (thin wrapper over verbs)

Promote RDMA technology in Spark community (Al Spark summit talks Accelerating Shuffle: A Tailor-Made RDMA
Solution for Apache Spark, Accelerated Spark on Azure: Seamless and Scalable Hardware Offloads in the Cloud)

Initial customers POC, collected requirements and feedback.

2019 SparkUCX shuffle plugin https://github.com/openucx/sparkucx
Java wrapper for UCX library implementation
Fixes architectural bottlenecks in SparkRDMA

2020 Nvidia Rapids for Spark (to be open sourced)
Based on UCX java library for communication
GPU + RDMA acceleration

7 © OpenFabrics Alliance

https://github.com/Mellanox/SparkRDMA
https://databricks.com/session/accelerating-shuffle-a-tailor-made-rdma-solution-for-apache-spark
https://databricks.com/session/accelerated-spark-on-azure-seamless-and-scalable-hardware-offloads-in-the-cloud
https://github.com/openucx/sparkucx

r.Du_.l UNIFIED COMMUNICATION X (UCX)

© OpenFabrics Alliance

UCX

= UCXis a framework for network APIs and stacks

= UCX aims to unify the different network APIs, protocols and implementations into a
single framework that is portable, efficient and functional

= UCX doesn’t focus on supporting a single programming model, instead it provides
APIls and protocols that can be used to tailor the functionalities of a particular
programming model efficiently

= When different programming paradigms and applications use UCX to implement their
functionality, it increases their portability. As just implementing a small set of UCX APlIs
on top of a new hardware ensures that these applications can run seamlessly without
having to implement it themselves

9 © OpenFabrics Alliance

UCX GOALS

Unified API Focus on performance Production quality

Applications driven, simple,

Fast, scalable, highl it ing,
extendable, HW-agnostic ghly Multi-tier testing, used by

optimized low latency high top Mellanox customers in
bandwidth messaging production
framework

Open source Innovation Multi arch/transports

Collaboration between Concepts and ideas from RoCE, InfiniBand, Cray, TCP,
industry, laboratories, and research in academia and shared memory, GPUs, x86,
academia industry ARM, POWER

Co-design of Network APIs

10 © OpenFabrics Alliance

UCX GOALS

Applications

UCP — High Level API (Protocols)
Transport selection, multi-rail, fragmentation

HPC API: 110 API: Connection establishment:
tag matching, active messages Stream, RPC, remote memoryaccess, atomics client/server, external

UCT — Low Level API (Transports)

GPU / Accelerators

‘ RC H DCT J ‘ uD H iWarp J ‘ CUDA J ‘ AMD;’ROCMJ

2
Hardware

11 © OpenFabrics Alliance

‘ Shared
memory

H TCP H OmniPathH Cray ‘

UCX OVERVIEW

= APIs

Socket-like stream send/receive, RPC

* Remote memory access and atomic operations

Client/server connection establishment

Fully non-blocking

= Advanced features

Full support for GPU and GPU Direct

Multi-rail and fault tolerance

Direct verbs for minimal software overhead

Thread-safety with separate resources per-thread

Interrupt and polling-based progress

Smart data transfer protocols (eager, rendezvous, bcopy, zcopy, ...)
12 © OpenFabrics Alliance

APACHE SPARK + UCX = ACCELERATED SHUFFLE
0
=]

© OpenFabrics Alliance

SHUFFLE MANAGER PLUGIN

= Spark allows for external implementations of
ShuffleManagers to be plugged in S
* Configurable per-job using: “spark.shuffle. manager” pQ

" The plugin interface allows proprietary implementations
of Shuffle Writers and Readers, and essentially defers _

K’

the entire Shuffle process to the new component

= SparkUCX utilizes this interface to introduce RDMA in J\z
the Shuffle process SprK

14 © OpenFabrics Alliance

SPARK+UCX OPERATION FLOW

= |nitialization:
* Spark driver allocates global metadata buffer per shuffle stage, to hold addresses and memory keys of data
and index files on mappers.

= Mapper phase:
°* mmap() and register index and data files
* Publish {address, rkey} to driver metadata buffer (ucp_put).

= Reduce phase:
* Fetch metadata from driver (ucp_get)

* For each block:
» Fetch offset in data file, from index file (ucp_get).
 Fetch block contents from data file (ucp_get).

15 © OpenFabrics Alliance

JUCX API EXAMPLE IN SPARK

1. Instantiate ucp context:

UcpConetxt context = new UcpContext(new UcpParams().requestRmaFeature());

2. Reqgister memory on context:

UcpMemory memoryRegion = context.memoryMap(new UcpMemMapParams().setLength(length).allocate())

3. Instantiate ucp worker:

UcpWorker worker = context.newWorker(new UcpWorkerParams().setCpu(0).requestWakeupRMA());

4. Instantiate ucp endpoint:

UcpEndpoint endpoint = worker.newEndpoint(hew UcpEndpointParams().setSocketAddress(InetSocketAddress("1.2.3.4:1234"));

5. Perform get/put/send/recv operation on endpoint:

UcxRequest request = endpoint.getNonBlocking(remoteAddress, remoteKey, localBuffer, callback);

6. Progress request until it's completed:

worker.progressRequest(request)

16 © OpenFabrics Alliance

SPARK+UCX BENEFITS

= Accelerating Spark

* Lower Block transfer times (latency and total
transfer time)

* Lower Memory consumption and management
* Lower CPU utilization
* GPU Direct

= Easy to deploy and configure
* Packed into a single JAR file

° Plugin is enabled through a simple configuration
handle

* Allows finer tuning with a set of configuration
handles

= Configuration and deployment are on a
per job basis
* Can be deployed incrementally

17 © OpenFabrics Alliance

SPARK SHUFFLE PERFORMANCE (CPU)

Using default TCP vs SparkUCX (RoCE)

Benchmarks: Terasort + Pagerank (0N 4 ROCE:

* https://github.com/Intel-bigdata/HiBench

Terasort:

* 1.2 TB input, 10K mappers, 15k reducers
Pagerank:

100 GigE

* Bigdata Hibench workload (600 Gb), 5K mappers, 15K reducers
15 nodes: Broadwell @ 2.60GHz, 250GB RAM, 500GB HDD
ConnectX-5: Infiniband: 100G EDR. TCP device: IPoIB 100G

Red Hat Enterprise Linux Server release 7.5 (Maipo)
(kernel: 3.10.0-862.el7.x86_64)

MLNX_OFED_LINUX-4.6-1.0.1.1.

Spark-2.4.3, Hadoop-2.9.2, UCX v1.8.0

Deployment guide:
https://docs.mellanox.com/pages/releaseview.action?pagel
d=19819236

Worker 2
Management §
Network

18 © OpenFabrics Alliance

https://github.com/Intel-bigdata/HiBench
https://docs.mellanox.com/pages/releaseview.action?pageId=19819236

SPARK SHUFFLE PERFORMANCE (CPU)

Using default TCP vs SparkUCX (RoCE)

Terasort Pagerank
800
(1)
700 20 A’
= 600

500

25%

-
]
o
Total time, seconds
IS
o
o

300
200
0 20 40 &0 80 100 120 140 160 180 100
Time, seconds
0
m Totaltime Reducer time UCX TCP
Stageld - Description TCP Duration |Tasks: Succeeded/Total Input Qutput Shuffle Read Shuffle Write
1 count at TeraSort.scala: 153 +details 2019/10/10 17:05:05 2.3 min 15000/15000 1777.0 GB
Stageld ~ Description ch Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
1 count at TeraSort.scala:153 +details 2019/10/10 17:13:32 1.4 min 15000/15000 1777.0 GB

19 © OpenFabrics Alliance

SPARK SHUFFLE PERFORMANCE GPU

g " 50
Inventory Pricing Queries: >5X S 9
time reduction Q9
S c GPU GPU+UCX
& 45 8.4
S
2 @ 200
[
ETL for Logistical Regression Model: A § 0 ey CPULLICX
>2X time reduction > v !
o £ 172 79
o}

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22674-accelerating-apache-spark-3.0-
with-rapids-and-gpus.pdf

20 © OpenFabrics Alliance

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22674-accelerating-apache-spark-3.0-with-rapids-and-gpus.pdf

2020 OFA Virtual Workshop

THANK YOU

Peter Rudenko, software engineer

