
SPARKUCX – RDMA ACCELERATION PLUGIN FOR SPARK

Peter Rudenko, software engineer

Mellanox Technologies

2020 OFA Virtual Workshop

APACHE SPARK

2 © OpenFabrics Alliance

APACHE SPARK
Leading Framework for Distributed, Scale-Out Data Analytics

3 © OpenFabrics Alliance

202020102000

Data Processing

Requirement
100s of 1000s of data
scientists and over
16,000 enterprises use
Spark

Spark is 100x faster at
processing data than
Hadoop

1000+ contributors
across 250+ companies

Databricks platform
alone spins up 1 million
virtual machines per day

▪ Spark’s in-memory model completely

changed how shuffle is done

▪ In both Spark and Hadoop, map output is

saved on the local disk

▪ In Hadoop, map output is then copied over

the network to the destined reducer’s local

disk

▪ In Spark, map output is fetched from the

network, on-demand, to the reducer’s

memory

Memory-to-network-to-memory? RDMA/RoCE is a perfect fit!

HADOOP’S MAPREDUCE VS. APACHE SPARK

4 © OpenFabrics Alliance

SPARK’S SHUFFLE BASICS

5 © OpenFabrics Alliance

THE COST OF SHUFFLING

▪ Shuffling is very expensive in terms of CPU, RAM, disk and network

▪ Spark users try to avoid shuffles as much as they can

▪ Speedy shuffles can relieve developers of such concerns, and simplify applications

6 © OpenFabrics Alliance

MELLANOX SPARK SHUFFLE ACCELERATION

▪ 2017 SparkRDMA shuffle plugin open sourced https://github.com/Mellanox/SparkRDMA

• Based on disni library (thin wrapper over verbs)

• Promote RDMA technology in Spark community (AI Spark summit talks Accelerating Shuffle: A Tailor-Made RDMA

Solution for Apache Spark, Accelerated Spark on Azure: Seamless and Scalable Hardware Offloads in the Cloud)

• Initial customers POC, collected requirements and feedback.

▪ 2019 SparkUCX shuffle plugin https://github.com/openucx/sparkucx

• Java wrapper for UCX library implementation

• Fixes architectural bottlenecks in SparkRDMA

▪ 2020 Nvidia Rapids for Spark (to be open sourced)

• Based on UCX java library for communication

• GPU + RDMA acceleration

7 © OpenFabrics Alliance

https://github.com/Mellanox/SparkRDMA
https://databricks.com/session/accelerating-shuffle-a-tailor-made-rdma-solution-for-apache-spark
https://databricks.com/session/accelerated-spark-on-azure-seamless-and-scalable-hardware-offloads-in-the-cloud
https://github.com/openucx/sparkucx

UNIFIED COMMUNICATION X (UCX)

8 © OpenFabrics Alliance

UCX

▪ UCX is a framework for network APIs and stacks

▪ UCX aims to unify the different network APIs, protocols and implementations into a

single framework that is portable, efficient and functional

▪ UCX doesn’t focus on supporting a single programming model, instead it provides

APIs and protocols that can be used to tailor the functionalities of a particular

programming model efficiently

▪ When different programming paradigms and applications use UCX to implement their

functionality, it increases their portability. As just implementing a small set of UCX APIs

on top of a new hardware ensures that these applications can run seamlessly without

having to implement it themselves

9 © OpenFabrics Alliance

UCX GOALS

10 © OpenFabrics Alliance

Focus on performance

Fast, scalable, highly
optimized low latency high
bandwidth messaging
framework

Open source

Collaboration between
industry, laboratories, and
academia

Production quality

Multi-tier testing, used by
top Mellanox customers in
production

Unified API

Applications driven, simple,
extendable, HW-agnostic

Innovation

Concepts and ideas from
research in academia and
industry

Multi arch/transports

RoCE, InfiniBand, Cray, TCP,
shared memory, GPUs, x86,
ARM, POWER

Co-design of Network APIs

UCX GOALS

11 © OpenFabrics Alliance

UCX OVERVIEW

▪ APIs

• Socket-like stream send/receive, RPC

• Remote memory access and atomic operations

• Client/server connection establishment

• Fully non-blocking

▪ Advanced features

• Full support for GPU and GPU Direct

• Multi-rail and fault tolerance

• Direct verbs for minimal software overhead

• Thread-safety with separate resources per-thread

• Interrupt and polling-based progress

• Smart data transfer protocols (eager, rendezvous, bcopy, zcopy, …)

12 © OpenFabrics Alliance

APACHE SPARK + UCX = ACCELERATED SHUFFLE

13 © OpenFabrics Alliance

SHUFFLE MANAGER PLUGIN

▪ Spark allows for external implementations of

ShuffleManagers to be plugged in

• Configurable per-job using: “spark.shuffle.manager”

▪ The plugin interface allows proprietary implementations

of Shuffle Writers and Readers, and essentially defers

the entire Shuffle process to the new component

▪ SparkUCX utilizes this interface to introduce RDMA in

the Shuffle process

14 © OpenFabrics Alliance

SortShuffleManager

UcxShuffleManager

SPARK+UCX OPERATION FLOW

▪ Initialization:

• Spark driver allocates global metadata buffer per shuffle stage, to hold addresses and memory keys of data

and index files on mappers.

▪ Mapper phase:

• mmap() and register index and data files

• Publish {address, rkey} to driver metadata buffer (ucp_put).

▪ Reduce phase:

• Fetch metadata from driver (ucp_get)

• For each block:

• Fetch offset in data file, from index file (ucp_get).

• Fetch block contents from data file (ucp_get).

15 © OpenFabrics Alliance

JUCX API EXAMPLE IN SPARK

1. Instantiate ucp context:

UcpConetxt context = new UcpContext(new UcpParams().requestRmaFeature());

2. Register memory on context:

UcpMemory memoryRegion = context.memoryMap(new UcpMemMapParams().setLength(length).allocate())

3. Instantiate ucp worker:

UcpWorker worker = context.newWorker(new UcpWorkerParams().setCpu(0).requestWakeupRMA());

4. Instantiate ucp endpoint:

UcpEndpoint endpoint = worker.newEndpoint(new UcpEndpointParams().setSocketAddress(InetSocketAddress("1.2.3.4:1234"));

5. Perform get/put/send/recv operation on endpoint:

UcxRequest request = endpoint.getNonBlocking(remoteAddress, remoteKey, localBuffer, callback);

6. Progress request until it's completed:

worker.progressRequest(request)

16 © OpenFabrics Alliance

SPARK+UCX BENEFITS

▪ Accelerating Spark
• Lower Block transfer times (latency and total

transfer time)

• Lower Memory consumption and management

• Lower CPU utilization

• GPU Direct

▪ Easy to deploy and configure
• Packed into a single JAR file

• Plugin is enabled through a simple configuration
handle

• Allows finer tuning with a set of configuration
handles

▪ Configuration and deployment are on a
per job basis
• Can be deployed incrementally

© OpenFabrics Alliance17

SPARK SHUFFLE PERFORMANCE (CPU)

© OpenFabrics Alliance18

Using default TCP vs SparkUCX (RoCE)

▪ Benchmarks: Terasort + Pagerank

• https://github.com/Intel-bigdata/HiBench

▪ Terasort:

• 1.2 TB input, 10K mappers, 15k reducers

▪ Pagerank:

• Bigdata Hibench workload (600 Gb), 5K mappers, 15K reducers

▪ 15 nodes: Broadwell @ 2.60GHz, 250GB RAM, 500GB HDD

▪ ConnectX-5: Infiniband: 100G EDR. TCP device: IPoIB 100G

▪ Red Hat Enterprise Linux Server release 7.5 (Maipo)

(kernel: 3.10.0-862.el7.x86_64)

▪ MLNX_OFED_LINUX-4.6-1.0.1.1.

▪ Spark-2.4.3, Hadoop-2.9.2, UCX v1.8.0

▪ Deployment guide:

https://docs.mellanox.com/pages/releaseview.action?pageI

d=19819236

https://github.com/Intel-bigdata/HiBench
https://docs.mellanox.com/pages/releaseview.action?pageId=19819236

SPARK SHUFFLE PERFORMANCE (CPU)

© OpenFabrics Alliance19

Using default TCP vs SparkUCX (RoCE)

25%

40%

20%

UCX

TCP

SPARK SHUFFLE PERFORMANCE GPU

© OpenFabrics Alliance20

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22674-accelerating-apache-spark-3.0-
with-rapids-and-gpus.pdf

ETL for Logistical Regression Model:

>2X time reduction

Inventory Pricing Queries: >5X

time reduction

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22674-accelerating-apache-spark-3.0-with-rapids-and-gpus.pdf

THANK YOU
Peter Rudenko, software engineer

Mellanox Technologies

2020 OFA Virtual Workshop

