
DISTRIBUTED ASYNCHRONOUS OBJECT STORAGE (DAOS)

Kenneth Cain, Johann Lombardi, Alexander Oganezov

Intel

2020 OFA Virtual Workshop

NOTICES AND DISCLAIMERS

2 © OpenFabrics Alliance

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No product or component can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about
performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks .

Intel Advanced Vector Extensions (Intel AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate
at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system
configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product
User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances
will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

OUTLINE

▪ DAOS overview

▪ Lessons learned building DAOS using OFI / libfabric

▪ Brainstorm – opportunities to further leverage networks/fabrics

3 © OpenFabrics Alliance

DAOS ARCHITECTURE OVERVIEW

4 © OpenFabrics Alliance

DAOS ARCHITECTURE:
CLIENT LIBRARY AND INTERFACES

© OpenFabrics Alliance5

AI/Analytics/Simulation Workflow

DAOS library

RDMA
transfers

Middleware

PMDK

DAOS
Service

Intel® QLC 3D Nand
SSD

DAOS Nodes

RPC

SPDK

Compute Nodes

POSIX I/O

HPC APPs

HDF5 MPI-IO Python
Apache
Spark

Apache
Arrow

(No)SQL

Analytics/AI APPs

TensorFlowSEGY

Developed Investigating

▪ POSIX I/O – namespace distributed over servers

• DAOS Filesystem (libdfs) – apps / frameworks may link directly

• FUSE Daemon – transparent access to DAOS, involves syscalls

• I/O Interception Library – OS bypass for read/write operations

▪ MPI-IO Support

• MPI-IO Driver uses DAOS array API (+ libdfs for collective open)

▪ Python Bindings

• Export key-value store objects

• Integrate with dictionaries: iterator, direct assignment, etc.

DAOS ARCHITECTURE:

▪ RDMA (iWARP, RoCE, IB, OPA) + scalable collectives

▪ User-space networking, libfabric (via CART / Mercury)

• RPC via tagged messages: fi_tsend / fi_trecv

• Bulk transfer via RDMA: fi_readmsg / fi_writemsg

• End-to-end OS bypass: low-latency, high-message-rate in I/O path

▪ Clients / applications link with DAOS lib

• No: context switch, locking, caching, or data copy

• No need for dedicated cores

▪ Servers initiate RDMA

• PM access over fabric:

• Zero-copy RDMA to PM ; mmap’ed via PMDK

• Memory consistency / flush done in server code after RDMA

• NVMe SSD access over fabric:

• RDMA into DRAM ; then SPDK for I/O to device

HIGH PERFORMANCE COMMUNICATIONS

© OpenFabrics Alliance6

AI/Analytics/Simulation Workflow

DAOS library

RDMA
transfers

File HDF5 Spark
…

PMDK

DAOS
Service

Intel® QLC 3D Nand
SSD

DAOS Nodes

RPC

SPDK

Compute Nodes

DAOS ARCHITECTURE:

▪ Algorithmic placement

• Identify servers to store data replicas or shards

• Client-calculated jump consistent hash based on

key, object class (e.g., replicated, striped)

• Fault domains taken into account – reduce impact

of server loss (e.g., if a whole domain fails)

▪ One tier, two media types:

• Server-selected media

• Data Center Persistent Memory (DCPMM)

• PM app small, byte-granular data, metadata

• PM DAOS metadata

• NVMe (*NAND, Intel® Optane™) SSD

• SSD app-only bulk data (for high throughput)

• SSD (aggregation of small data in PM)

STORAGE SERVERS – TWO-LEVEL DATA PLACEMENT

© OpenFabrics Alliance

AI/Analytics/Simulation Workflow

DAOS library

RDMA
transfers

File HDF5 Spark
…

PMDK

DAOS
Service

Intel® QLC 3D Nand
SSD

DAOS Nodes

RPC

SPDK

Compute Nodes

UPI

Xeon
CPUPCIe

x16
PCIe
x4

Fabric

PCIe
x16

PCIe
x4

Xeon
CPU

NIC

NIC

Fabric

DCPMM

DCPMM

NVMe

NVMe

Dual-Socket DAOS Nodes (DNs)
Intel® Xeon servers with DCPMM & NVMe SSDs

Replication Erasure Code (EC)

▪ Leader server chosen to manage distributed transaction protocol (DTX)

• Chosen algorithmically based on key – no single leader node bottleneck

▪ Degraded mode – client I/O satisfied by surviving servers

• Non-blocking protocol for server fail-out

▪ Self-healing / rebuild (online recovery)

• Declustered – per object, select alternate server storage to restore original degree of replication

• Many alternate nodes in parallel – pull object data from surviving servers

• Throttled – to control impact to serving ongoing client I/O requests

© OpenFabrics Alliance8

Client

Server Server Server

data
Client

Server Server ServerServer

data

DATA PROTECTION AND SELF-HEALING / REBUILD
COMMON PROPERTIES OF REPLICATION AND ERASURE CODE (EC)

Data transfer

directly with client

DTX RPC with leader

DAOS TO LIBFABRIC

▪ CART: Collective Adaptive Reliable Transport

• P2P RPC reliability, built over Mercury RPC:

• Timeout detection / retry

• Flow control

• SWIM protocol for fault detection / reaction

• Collective RPC – broadcast, barrier, incast variable (IV)

• Reliability: group versioning as membership expands or contracts

▪ Mercury: P2P RPC between targets, pluggable OFI providers

VIA CART, MERCURY RPC MIDDLEWARES

© OpenFabrics Alliance9

CART (DAOS project)

Mercury (ANL, HDF Group)
DAOS team contributions

Providers, OFI / libfabric (OFA)
DAOS team contributions

DAOS
(client + server libraries)

Server1
Address:

ofi+sockets://192.168.010:2236

Server2
Address:

ofi+sockets://192.168.017:7554

Send RPC

Send Reply

CART RANKS AND TAGS/CONTEXTS

▪ Rank: Unique 32-bit identifier assigned to each process in a ‘set’ (e.g., DAOS server)

▪ Tag: Number identifying a context/port on the node

▪ Server can create multiple CART contexts, process them independently.

▪ Allows different priorities of executions depending on context receiving a given RPC

AND ASSOCIATION WITH DAOS SERVER NODE RESOURCES

© OpenFabrics Alliance10

Client1
Send RPC

(rank=5, tag=1) Port0

Server (rank=5)

Context0

Port1 Context1

Thread0
(SWIM)

Thread1

Port2 Context2 Thread2

CART View DAOS View

System
Xstream

Target0
Xstream
Target1
Xstream

▪ Xstream: execution stream (pthread)

• System xstream (e.g., for DAOS metadata tasks)

• 1 Thread / target (often configured based on #cores)

• Helper threads for target background tasks e.g., rebuild

▪ user-level threads (argobots)

• Context switching in user-space
.

CART RPCS

Timeouts – 3 levels

▪ All RPCs, per context, per RPC

▪ Can resend on timeout

Flow Control (Max RPCs in flight to a target)

▪ Initiated RPCs > limit put on a queue,

processed after others complete or timeout

POINT-TO-POINT (P2P)

© OpenFabrics Alliance11

Progress-based model

▪ No actions occur until crt_progress() called (near other calls, or in separate thread)

• RPC create / send does not perform communication – happens when crt_progress() invoked on the CART context.

▪ Callback functions invoked from the context of the crt_progress() function

• E.g., RPC handling (server), RPC reply received (client), bulk transfer completion

Inline vs. Bulk Transfers

▪ Messages < ‘eager size’ use send, inline with RPC

▪ Messages > ‘eager size’ use RDMA either internally (CART/HG) or explicitly (bulk API)

CART RPCS

▪ Barrier synchronization

▪ Broadcast

▪ Shared Incast Variables (IV)

• Scalable Fetch, Update, Invalidate ops

• Example use: scalable read cache

COLLECTIVE

© OpenFabrics Alliance12

crt_iv_invalidate

crt_iv_invalidate
crt_iv_invalidate

▪ Optional rank filtering for collective over (sub)group

▪ Request propagated through K-ary tree

▪ Reply aggregation

▪ Chained bulk transfer support

▪ Group versioning, error on receiver / sender mismatch

Example: broadcast used within IV invalidate

LESSONS LEARNED: BUILDING DAOS UPON

OFI / LIBFABRIC

13 © OpenFabrics Alliance

CLIENT/SERVER VS MPI MODEL OF USAGE

▪ DAOS client/server model, different application lifecycles
• Client endpoint addresses can end up being reused – differentiate between 2 client runs reusing same endpoint address

• Server resources dedicated to a client need to be released on client disconnect

• Examples: Address Vector (AV) table entry, bounce buffers, memory registrations (MR), …

• Additional challenges on abrupt disconnect (client failure)

▪ MPI usage tends to be more of “launch everything at once, do a job and exit”
• Servers: dynamically expand / contract system ; and members of sub-groups associated with storage pools

▪ DAOS utilizes multiple contexts, with different type of workloads
• Background fault detection protocols e.g., SWIM

• DAOS metadata activities and request handling

• I/O processing and background activity (e.g., self-healing / rebuild)

▪ DAOS requires multi-tenancy support:
• Server can run as a different user (possibly root) compared to clients – some providers do not support this model

14 © OpenFabrics Alliance

SCALABILITY

▪ Number of issues found during scalability testing
• MR cache: seeing some buffer overwrites / corruption (that do not occur when disabling MR cache)

• Race conditions: DAOS multi-threaded request processing. Have seen issues in some providers

• Resource leaks: AV table entries, mem registrations, buffers

• Additional challenge, concurrent cleanup with MPI-based clients (near simultaneous disconnects)

▪ Connection-oriented providers and resource pre-allocation
• RXM-based providers pre-allocate resources per client based on FI_UNIVERSE_SIZE

• CQ size, bounce buffers

• Address entry in AV table (populated by fi_av_insert())

• Some resources such as AV table size can be implemented in HW with strict limits on maximum size

• As a result server has to manage ‘clients’ by evicting stale/old/LRU entries

▪ Connection-less RXD provider considered:
• Does not require persistent connection – scales higher than connection-oriented providers

• DAOS cannot use it for now due to no RDMA support - poor performance

15 © OpenFabrics Alliance

TESTING

▪ Providers tend to be in various states of stability

▪ Currently sockets provider is main one in DAOS CI
• Sockets provider is not performant ; and not actively maintained

• DAOS would like to move to OFI_RXM;TCP provider, however facing stability issues for now

Wishlist items

▪ More automated tests using available providers
• With combinations of common / provider-specific variables – e.g., with/without shared rx buffers (FI_OFI_RXM_USE_SRX)

▪ Longevity tests

▪ Performance tests

▪ Valgrind/Thread/memory sanitizer tests:
• DAOS has a few valgrind memory suppressions for issues seen in providers

16 © OpenFabrics Alliance

POTENTIALLY INTERESTING FABRIC FEATURES

17 © OpenFabrics Alliance

POTENTIAL AREAS OF EXPLORATION - BRAINSTORM

▪ Multiple interface solutions on client – e.g., single virtual / bonded interface
• A process uses one interface today – with many processes / node (e.g., MPI ranks) interface use can be distributed

• A single, highly threaded process needs a mechanism to use all interfaces (e.g., for performance and/or fault resilience)

• Each system (e.g., MPI, DAOS) needs to solve the problem on its own – possible wish list item for OFI / libfabric

▪ Lower-latency client-initiated RDMA to server persistent memory:
• Smaller scale, special cases assumed

• Array + Map Conceptual API: preallocated, registered PM

▪ Network e.g., switch configured and enforced traffic classes/QoS, traffic management.
• current approach: enforce proportion of normal vs. background I/O (e.g., self-healing) through user-level thread scheduling.

▪ Network telemetry to diagnose / optimize DAOS service performance

▪ Network offloaded checksum, erasure code, etc.

18 © OpenFabrics Alliance

RESOURCES

19 © OpenFabrics Alliance

Resource URL

Source Code on GitHub https://github.com/daos-stack/daos

Documentation https://daos-stack.github.io/

Community Mailing List https://daos.groups.io/

DAOS Solution Brief https://www.intel.com/content/www/us/en/high-performance-computing/overview.html

https://github.com/daos-stack/daos
https://daos-stack.github.io/
https://daos.groups.io/
https://www.intel.com/content/www/us/en/high-performance-computing/overview.html

THANK YOU
Kenneth Cain, Software Engineer

Intel

2020 OFA Virtual Workshop

BACKUP SLIDES

21 © OpenFabrics Alliance

▪ Erasure code in DAOS

• Client compute EC on full stripe write

• Replication, server merge/encode for partial write

▪ Degraded mode

• Client-side inflight data reconstruction

▪ Self-healing / rebuild (online recovery)

• Server-side exchange / data reconstruction

DATA PROTECTION AND SELF-HEALING / REBUILD

© OpenFabrics Alliance22

Client

Server Server Server

data

Client

Server Server ServerServer

data

▪ Data replication in DAOS

• Primary-slave

• Distributed transaction for atomicity

▪ Degraded mode

• Client issue I/O requests to surviving server(s)

▪ Self-healing / rebuild (online recovery)

• Server-side exchange / data reconstruction

DAOS COMMUNITY ROADMAP

23 © OpenFabrics Alliance

DAOS PERFORMANCE

▪ IOR

• Easy: any IOR pattern to show best-case

performance without any explicit caching

• Hard: single shared file with transfer 47008 bytes!

• Separate Write and Read/verify runs.

▪ mdtest

• Easy: private directory per process with empty files

• Hard: shared directory with 3901-byte files

• Separate write, read, stat, and delete runs

▪ Find

• scan namespace created with IOR and mdtest

▪ 10, 26 Compute nodes
• 10 node x 31 ranks/node (10 node challenge)

• 26 node x 28 ranks/node (open challenge)

• 2x BDW CPU

• Xeon® E5-2699 v4 @2.2GHz

• 22 cores per CPU

• 2x Intel® Omni-Path® 100 adaptors

▪ 24x Storage nodes
• 2x CLX CPU

• Xeon® Platinum 8260L @ 2.4GHz

• 24 cores per CPU

• 12x Optane® DC Persistent Memory DIMMs

• 500GB each for a total of 3TB

• Configured in app-direct/interleaved mode

• 2x Intel® Omni-Path® 100 adaptors

IO-500 BENCHMARKS

© OpenFabrics Alliance24

IO-500 Benchmarks DAOS Testbed

DAOS & IO-500: BANDWIDTH

25 © OpenFabrics Alliance

0 50 100 150 200 250 300 350

ior_easy_write

ior_easy_read

ior_hard_write

ior_hard_read

DAOS IO-500 - Bandwidth

DAOS & IO-500: IOPS

26 © OpenFabrics Alliance

0 1000 2000 3000 4000 5000 6000 7000 8000

find

mdtest_hard_delete

mdtest_easy_delete

mdtest_hard_stat

mdtest_easy_stat

mdtest_hard_read

mdtest_hard_write

mdtest_easy_write

DAOS IO-500 - IOPS

POOLS AND CONTAINERS

© OpenFabrics Alliance27

Pool 1 (DCPMM + NVMe)

Pool 2 (DCPMM) Pool 3 (DCPMM+NVMe)

Storage Node

Target1 Target2 Target3 Target4

Storage Node Storage Node Storage Node

Target1 Target2 Target3 Target4 Target1 Target2 Target3 Target4

DAOS Container

datadatadatafile

dir

datadatafile

dir

datadatadatadatafile

dir

root

Encapsulated POSIX Namespace File-per-process

DAOS Container

datadatadatadatafile

datadatadatadatafile

datadatadatadatafile

datadatadatadatafile

DAOS Container

datadatadatadataset

group

datadatadataset

group

datadatadatadatadataset

group

group

HDF5 « File » Key-value store

Graph

DAOS Container

valuekey

valuekey

valuekey

valuekey valuekey

DAOS Container

node

node

node

node
node

node

DAOS Container

Columnar Database

key

key

key

key

Value

Value

Value

Value

Value

Value

Value

Value

STORAGE TARGET REINTEGRATION / ADDITION

• Reintegrate recovered target to the pool

• Add temporarily excluded storage targets back to

the pool

• Replaced: empty storage target

• Not replaced: retained data but lagging behind

• Migrate data back to the reintegrated targets

• Expand the pool size

• Add more nodes/devices to the system

• Rebalance data within the pool

• Online data rebalance

© OpenFabrics Alliance28

New target

Rebalancing

After rebalancing

29

▪ DAOS File System (libdfs)

• Encapsulated POSIX namespace

• Application/framework can link directly with libdfs

• ior/mdtest backend provided

• MPI-IO driver leveraging collective open

• TensorFlow, …

▪ FUSE Daemon (dfuse)

• Transparent access to DAOS

• Involves system calls

▪ I/O interception library

• OS bypass for read/write operations

POSIX I/O SUPPORT

Application / Framework

DAOS library (libdaos)

DAOS File System (libdfs)

Interception Library

dfuse

Single process address space

DAOS Storage Engine

RPC RDMA

End-to-end
user space

No system calls

Intel® QLC 3D
Nand SSD

30

▪ The DAOS MPI-IO driver is implemented

within the I/O library in MPICH (ROMIO)

• Added as an ADIO driver

• Portable to Open-MPI, Intel MPI, etc.

• Merged in upstream mpich

• 1 MPI File = 1 DAOS Array Object

MPI-IO DRIVER FOR DAOS

0 1 2 3 4 5 6 7 8 9

0 21 3

1 byte

0 1 2

Record = 1 cell

Logical File

DAOS Array DKeys
Chunk Size = 3

3 4 5 6 7 8 9
Array Type
Records

Akey = ‘0’

Application works seamlessly by just specifying the use of the driver by appending “daos:” to the path.

FINE-GRAINED I/O

Mix of storage technologies

▪ Storage Class Memory (AEP / Optane DC
pmem)

• DAOS metadata & application metadata (6% min)

• Byte-granular application data

▪ NVMe SSD (*NAND, Optane SSDs)

• Cheaper storage for bulk data (e.g. checkpoints)

• Multi-KB

I/Os logged / inserted into persistent index

▪ Non-destructive write & consistent read

▪ No alignment constraints

▪ No read-modify-write

© OpenFabrics Alliance31

Index

Record extents

V
e
rs

io
n Being written

Committed

SCM

NVMe SSD

v1

v2

v3

read@v3 Application
Buffer

Server-side
Index

Bulk descriptor segments

DATA AGGREGATION

• Merge small extents in DCPMM, migrate to NVMe SSD

• Merge extents in NVMe SSD to larger extent

• Reclaim old snapshots

• Overwrites: delete old version

• Punch/delete: delete whole subtree

• EC aggregation

• Compute parities for partial writes

© OpenFabrics Alliance32

ADVANCED STORAGE MODEL

▪ Native support for structured, semi-

structured & unstructured data models

• Built on top of DCPMM

• Unconstrained by POSIX serialization

• Custom attributes

• Data access time orders of magnitude faster (µs)

• Scalable concurrent updates & high IOPS

• Non-blocking

• Enable in-storage computing

© OpenFabrics Alliance33

key1

val1

key3

val3

@

@

Application

NVMe SSD

DAOS

key1

val1

root
@

key3

val3

@

val2

key2

@@

@

@

val2 con’d

val2

key2

@

Application

DAOS Storage Engine
Open Source Apache 2.0 License

Data Model Library/Framework

Array KV Store Multi-level KV Store

