
SPDK BASED USER SPACE NVME OVER TCP TRANSPORT 

SOLUTION 

Ziye Yang, Cloud Software Engineer

Intel

2020 OFA Virtual Workshop



NOTICES AND DISCLAIMERS

2 © OpenFabrics Alliance

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system 

configuration.

No computer system can be absolutely secure. 

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete 

information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are 

measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 

information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more 

complete information visit http://www.intel.com/benchmarks .

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and 

"Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may 

cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance 

varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include 

SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not 

manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture 

are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. 

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide 

cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction. 

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are 

accurate. 

© 2020 Intel Corporation. 

Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. 

*Other names and brands may be claimed as property of others.

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo


OUTLINE

3 © OpenFabrics Alliance

▪ SPDK NVMe-oF development history & status

▪ SPDK NVMe-oF TCP transport design detail

▪ Smartly use Kernel TCP/IP stack with SPDK sock library

▪ Experimental results (selected)

▪ Ongoing work and development plan

▪ Conclusion



SPDK NVME-OF DEVELOPMENT HISTORY & 

STATUS

4 © OpenFabrics Alliance



SPDK NVME-OF TARGET TIMELINE

5 © OpenFabrics Alliance

19.01:  TCP transport released

17.03 – 17.07 : Functional hardening

17.11 – 18.11:  Rdma TRANSPORT IMPROVEMENTS

July 2016: Released with RDMA transport support

19.04 – 20.04 : Continuing 
Improvement

20.07+: Muser transport 
support



SPDK NVME-OF HOST TIMELINE

6 © OpenFabrics Alliance

19.01:  TCP Transport released

17.03 – 17.07 : Functional hardening (e.g., interoperability test with Kernel
target)

17.11 – 18.11:  Rdma TRANSPORT IMPROVEMENTs

Dec 2016: released with rdma transport support

19.04- 20.04: Continuing 
Improvement

20.07+: Muser transport 
support



SPDK NVME-OF TARGET DESIGN HIGHLIGHTS

7 © OpenFabrics Alliance

NVMe* over Fabrics Target Features Performance Benefit

Utilizes user space NVM Express* (NVMe) Polled Mode 
Driver

Reduced overhead per NVMe I/O

Group polling on each SPDK thread (binding on CPU core) 
for multiple transports

Better scaling to many connections 

Connections pinned to dedicated SPDK thread No synchronization overhead

Asynchronous NVMe CMD handling in whole life cycle No locks in NVMe CMD data handling path



SPDK NVME-OF TCP TRANSPORT

8 © OpenFabrics Alliance



GENERAL DESIGN AND IMPLEMENTATION

9 © OpenFabrics Alliance

• SPDK NVMe-oF TCP 

transport main code 

location.

• Host side code:  

lib/nvme/nvme_tcp.c

• Target side code:  

lib/nvmf/tcp.c

Transport Abstraction

FC

POSIX

RDMA TCP

VPP

Already released, and it is active for further optimization  

Already released, further development is stopped 

Uring



PERFORMANCE DESIGN CONSIDERATION FOR TCP TRANSPORT IN 

TARGET SIDE

10 © OpenFabrics Alliance

Ingredients Methodology

Design framework Follow the general SPDK NVMe-oF framework (e.g., 
polling group)

TCP connection optimization Use the SPDK encapsulated Socket API (preparing for 
integrating other stack, e.g., VPP )

NVMe/TCP PDU handling Use state machine to track

NVMe/TCP request life time cycle Use state machine to track
(Purpose: Easy to debug and good for further performance 
improvement)



11 © OpenFabrics Alliance

NVME TCP PDU RECEIVING HANDLING FOR EACH CONNECTION

Handle
payload

Error Path

Has
Payload?

No 
Payload

?

Ready

Handle
PSH

Handle
CH

Error
state



STATE MACHINE FOR NVME I/O FOLLOW IN SINGLE CONNECTION ON

TARGET SIDE

12 © OpenFabrics Alliance

Free

New Wait for 
Buffer

Ready to
Execute in 

NVMe

Need buffer?

Executing 
in NVMe 

driver

Transfer data from 
Host (get data for 

write cmd)

Ready
to

complete

Completed

Error Path

Read CMD?
Write cmd

(Sent R2T if needed)

Get data error

Not a valid CMD

Recycling resource

Executed 
in NVMe 

driver

Transfer 
Response 

PDU to host



SMARTLY USE KERNEL TCP/IP STACK WITH SPDK 

SOCK LIBRARY

13 © OpenFabrics Alliance



14 © OpenFabrics Alliance

THE SOCK IMPLEMENTATIONS IN SPDK 

Sock Abstraction

VPPUringPOSIX

Already released, and it is active in development 

• Current Recommendation:

• POSIX (Stable, no dependency on 
kernel)

• Uring (Request Linux kernel > 5.4.3), 
currently it is experimental .

• VPP :  We may investigate it more if VPP 
supports library integration mode but 
not only the standalone process mode.

Already released, further development is stopped 



COMMON KNOWLEDGE TO SMARTLY USE KERNEL TCP/IP STACK 

FOR IMPROVING NVME-OF TCP

▪ Nonblock mode: O_NONBLOCK setting on FD

▪ Group based strategy on Pollin, Read(v), write(v) for many TCP 

connections.

• Benefit: Reduce the system call overhead

• For example, (1) Group Pollin reduce number of readv calls;  (2)Group based writev

operations via uring sock on 16 TCP connections can reduce 15 system calls in one round. 

▪ Dedicated CPU core handling: Each connections on file descriptor should 

be handle by dedicated thread or CPU core.

▪ Buffered Read on each socket:  Reduce system call overhead

▪ Merged write on each socket: To reduce system call and improve 

throughput

15 © OpenFabrics Alliance



TCP READ OPERATION: ORIGINAL USAGE

16 © OpenFabrics Alliance

Buffer1 

Kernel 

User space  

Buffer2 Buffer3 

TCP stream (composed in sk buffer) 

• The address of Buffer1, Buffer2, and Buffer3 may be not known in the beginning,  the application 
cannot issue submit one readv system call to construct one IOV vector array, thus 3 system calls 
(readv) are needed.    

(1) Readv (2) Readv (3) Readv



BUFFERED READ SUPPORTED IN SPDK

17 © OpenFabrics Alliance

Buffer1 

Kernel 

User space  

Buffer2 

Buffer3 

TCP stream (composed in sk buffer) 

• In this cased, Buffer1, 2, 3 can be determined by application’s own logic.  And this solution tries to reduce the 
system call overhead, but introduces the memory copy overhead, so use IOAT or driver to drive CBDMA to 
mitigate the copy overhead by CPU.

• SPDK has util library(located in lib/util in spdk source folder) which supports the read buffer with pipe usage 
manner. 

Temp buffer 

(1)Readv

(2) Memory copy



MERGED WRITE SUPPORT IN SPDK

18 © OpenFabrics Alliance

size: 4096

Size: 8192

Size: 4096

IOV with
3 elements,
Total size:   

16384 bytes

Writev F: 4096

F: 0

F: 4096

Return value: 8192 bytes

• SPDK posix/uring libraries can merge the write I/O from app into big vectors in order reduce 
system calls.

• But  with Merged write, we still need to handle partial write if we use NONBLOCK I/O.



GROUP BASED ASYNCHRONOUS I/O OPERATION WITH URING

19 © OpenFabrics Alliance

Conn1

Kernel 

User space  

Connections in the same group

Conn2 Conn3 Connn

System call together 
(e.g., io_submit)

IO operation 
prep

IO operation 
prep

IO operation 
prep IO operation 

prep

TCP stream 1 

TCP stream 2 

TCP stream 3 

TCP stream n 

• Supported in SPDK uring sock library (Located in module/sock/uring in spdk folder)



EXPERIMENTAL RESULTS (SELECTED)

20 © OpenFabrics Alliance



LATENCY COMPARISON BETWEEN SPDK AND KERNEL (NULL BDEV

IS USED)

21 © OpenFabrics Alliance

Experimental Configuration is located from Page5 to Page 7 in: https://ci.spdk.io/download/performance-
reports/SPDK_tcp_perf_report_2001.pdf

68.02

68.51

71.29

105.05

93.99

110.14

0.00 50.00 100.00 150.00

4k 70% Reads 30%
Writes

4k 100% Random
Writes

4k 100% Random
Reads

Latency (usecs)

Average Latency Comparisons
SPDK Target vs Kernel Target (Both using 

kernel initiator on initiator side)

Kernel Target

SPDK Target
39.62

30.48

32.28

68.02

68.51

71.29

0.00 20.0040.0060.0080.00

4k 70% Reads
30% Writes

4k 100% Random
Writes

4k 100% Random
Reads

Latency (usecs)

Average Latency Comparisons
SPDK Initiator vs Kernel Initiator (Both 

using SPDK target on target side)

Kernel Initiator

SPDK Initiator

https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2001.pdf


LATENCY COMPARISON BETWEEN SPDK AND KERNEL (NULL BDEV

IS USED)

22 © OpenFabrics Alliance

Experimental configuration is located from Page5 to Page 7 in  https://ci.spdk.io/download/performance-
reports/SPDK_tcp_perf_report_2001.pdf

39.62

30.48

32.28

105.05

93.99

110.14

0.00 20.00 40.00 60.00 80.00 100.00 120.00

4k 70% Reads 30% Writes

4k 100% Random Writes

4k 100% Random Reads

Latency (usecs)

Average end2end Latency Comparisons between 
Kernel solution vs SPDK solution

Kernel solution

SPDK solution

https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2001.pdf


IOPS/CORE COMPARISON BETWEEN SPDK AND KERNEL ON 

TARGET SIDE

23 © OpenFabrics Alliance

Diagram is located in Page 43 in  https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2001.pdf

https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2001.pdf


ONGOING WORK AND DEVELOPMENT PLAN

24 © OpenFabrics Alliance



NEW DEVELOPMENT WITH INTEL® ETHERNET 800 SERIES

• Leverage Application Device Queues (ADQ) technology with the Intel®

Ethernet 800 Series Network Adapter. Benefit:  High IOPS with improved 

tail latency.

• ADQ is an application specific queuing and steering technology that dedicates and isolates 

application specific hardware NIC queues. 

• These queues are then connected optimally to application specific threads of execution. 

• Technique requirement:

• Kernel & driver: Busy polling; Socket option for NAPI_ID (SO_INCOMING_NAPI_ID); 

symmetric polling; ….

• Application:  Handle the socket with same NAPI_ID by dedicated thread/CPU. 

• Hardware:  

• Application level filtering & traffic shaping; Flow based queue steering and load balance.

25 © OpenFabrics Alliance



FURTHER DEVELOPMENT PLAN OF SPDK NVME-OF TCP

TRANSPORT

• Continue enhancing the functionality
• Including the compatible test with Linux kernel solution.

• Performance tuning in software
• Work on kernel TCP/IP stack 

• Smartly using kernel TCP/IP stack through io uring will be our direction, i.e., continue improving the 
performance via uring based sock implementation in SPDK. 

• Code in SPDK repo:  module/sock/uring

• Work on user space TCP/IP stack
• May continue investigate space stack: Seastar + DPDK. It depends on our optimization result with kernel 

TCP/IP stack.

• Performance enhancement via hardware features
• Networking hardware: Continue using features from NICs for performance improvement, 

e.g., 100Gb Intel® Ethernet 800 Series Network Adapter with ADQ.

• Other hardware: e.g., Figuring out TCP/IP offloading methods on FPGA and SmartNICs.

26 © OpenFabrics Alliance



CONCLUSION

27 © OpenFabrics Alliance



CONCLUSION

• SPDK NVMe-oF solution is well adopted by the industry.  In this 

presentation, followings are introduced, i.e., 
• The development status of SPDK NVMe-oF solution

• SPDK TCP transport development status and optimization direction, e.g., How to use kernel TCP/IP 

stack to optimize the NVMe-oF TCP.

• Some performance sharing with SPDK 20.01 release.

• Further development
• Continue following the NVMe-oF spec and adding more features.

• Continue performance enhancements and integration with other solutions.

• Call for activity in community
• Welcome to bug submission, idea discussion and patch submission for NVMe-oF

28 © OpenFabrics Alliance



THANK YOU
Ziye Yang, Cloud Software Engineer

Intel

2020 OFA Virtual Workshop


