
REMOTE PERSISTENT MEMORY ACCESS API

- THE SECOND APPROACH
Tomasz Gromadzki, Software Architect

Jan M. Michalski, Software Engineer

[June 9, 2020]

Intel Corporation

REMOTE PERSISTENT MEMORY
Remote Direct Persistent Memory Access

OpenFabrics Alliance Workshop 20202

SSD

RPMEM

HDD

NVMe-oF

Traditional Storage Replication

> 10 us

~0.5 us

< 10 us

> 15 us

> 10ms

PMEM

> 5 ms

PUSH REPLICATION METHOD ALLOWS

MORE DATA TO BE TRANSFERRED

3 OpenFabrics Alliance Workshop 2020

Initiator node
application

Target node
application

prepare data
for replication

RDMA Send
(New data avaialble)

RDMA Read

RDMA Send
(Replication done)

Pull method - traditional RDMA

Data transport
managed

by application

Data processing

Busy/wait due to
replication process

Initiator node
application

Target node
application

prepare data
for replication

Push method - RPMEM

Data processing

RDMA Flush

RDMA Write

RDMA Atomic Write
RDMA Flush

!
!

HW fully
accomplishes
data transfer

☺

librpmem BASED REPLICATION
The first approach

OpenFabrics Alliance Workshop 20204

▪ Read and write access to remote
persistent memory

▪ Software solution for
8 bytes atomicity guarantee

• The remote node’s rpmem daemon

▪ Read after write or send after write
method selected based on remote
platform configuration

▪ Designed for synchronous
replication for libpmemobj

int rpmem_persist(RPMEMpool *rpp, size_t offset,

size_t length, unsigned lane, unsigned flags);

int rpmem_read(RPMEMpool *rpp, void *buff, size_t

offset, size_t length, unsigned lane);

librpmem BASED REPLICA MANAGEMENT
The first approach

OpenFabrics Alliance Workshop 20205

▪ Configuration based on persistent

memory pool description files

▪ SSH used for out-of-band connection

▪ rpmemd daemon controls

a remote node’s pool set

▪ Deeply integrated with libpmemobj

RPMEMpool *rpmem_create(const char *target, const

char *pool_set_name, void *pool_addr, size_t

pool_size, unsigned *nlanes, const struct

rpmem_pool_attr *create_attr);

RPMEMpool *rpmem_open(const char *target, const

char *pool_set_name, void *pool_addr, size_t

pool_size, unsigned *nlanes, struct rpmem_pool_attr

*open_attr);

PMEMPOOLSET

100G /mountpoint0/myfile.part0

200G /mountpoint1/myfile.part1

remote replica

REPLICA pmem@10.123.11.7 remotepool.set

PAIN POINTS OF THE FIRST APPROACH
Customer’s feedback to librpmem

OpenFabrics Alliance Workshop 20206

PMDK (librpmem) provides Customers expect

Replication process

tightly coupled to libpmemobj

Replication process

controlled by app

Poolsets semantic is used

as replication basis

Replication process

to follow app data semantic

Static replication configuration Replication configuration might change online

based on application needs

No access

to replicated data in runtime

At least read access

to replicated data in runtime

Focus on RDMA.Write API RDMA.Write/Send as well as RDMA.Read support

depending on application case

Neither libfabric nor SSH dependencies

librpma THE SECOND APPROACH TO RPMEM

▪ memcpy-like API for RPMEM

▪ Hidden RDMA complexity

▪ Based on librpmem experience
• read-after-write, read-after-send

▪ RDMA Memory Placement
Extensions ready
• Flush, Atomic Write, Verify

▪ PMEM management left for an
application

RDMA Push Transfer Method

OpenFabrics Alliance Workshop 20207

...

...

libibverbs

iWarp
driver

RoCE
driver

ISV A
remote

persistency
solution

ISV A
application

RDMA Capable HW

InfiniBand
driver

rds-rdma

ISV B
remote

persistency
solution

ISV B
application

libfabric

librpmem

Application

ISV D
remote

persistency
solution

ISV D
application

ISV C
remote

persistency
solution

ISV C
application

librpma

librpma USE CASE MODEL

8 OpenFabrics Alliance Workshop 2020

▪ RMA

• This is the core of the library

▪ Connection management

• to ensure operations consistency

• to hide RDMA complexity

▪ Messaging

• also with PMEM-backed message buffers

▪ Memory management

• e.g. to support r_key exchange

Connection

management

Memory
management

RMA

Messaging

Application

Connect

Receive buffer

Send buffer

Read

Write

Connection setup

Register memory

Connect as passive peer

Connect as active peer

Check remote capabilities

<<include>>

Atomic write

Flush

<<include>>

Setup remote memory

Setup

Shutdown

Connection monitoring

Disconnect

Connection shutdown

<<extend>>

<<include>>

<<include>>

Send/receive bufffer setup
<<include>>

<<include>>

REMOTE MEMORY ACCESS

rpma_write (dst, dst_offset, src, src_offset, len, completion)

• completion – do we expect confirmation of the request

rpma_write_8bytes(dst, dst_offset, src, src_offset, completion)

rpma_flush(dst, offset, len, placement)

• placement = either Persistent or only Global Observability

rpma_read(dst, dst_offset, src, src_offset, len, completion)

rpma_next_completion(&operation, &status)

• allows collecting confirmations to write/flush/read operations

librpma API

OpenFabrics Alliance Workshop 20209

Non-blocking API

int rpma_conn_fd(rpma_conn, fd_type)

MEMORY MANAGEMENT

memory_local_handle = rpma_memory_new(void *ptr, size, usage, placement, flags)

• usage - bitwise or: read_src, read_dst, write_src, write_dst

• placement either persistent or volatile

• flags – e.g. cached/no cached write

rpma_memory_serialize(memory_local_handle, user_buffer)

• user_buffer allows delivering the local memory description to the remote side

rpma_memory_deserialize(user_buffer, memory_remote_handle)

• a remote memory handle is created from the user_buffer on the remote side

librpma API

OpenFabrics Alliance Workshop 202010

CONNECTION SETUP

▪ Active side

rpma_conn_setup(addr, service, connection**)
/* receive buffers setup */

rpma_connect(connection)
rpma_conn_get_remote_capabilities(…)

▪ Listening side

rpma_listen(addr, service, rpma_socket**)

rpma_socket_read (rpma_socket, connection, connection_status)
/* receive buffers setup */

rpma_accept(rpma_conn)
or rpma_reject(rpma_conn)

finally
rpma_socket_delete (rpma_socket);

librpma API

OpenFabrics Alliance Workshop 202011

CONNECTION MANAGEMENT AND CONFIGURATION

▪ Connection monitoring and shutdown

rpma_conn_status(connection_status)

rpma_disconnect(connection)

librpma API

OpenFabrics Alliance Workshop 202012

▪ Capabilities setup

rpma_peer_cfg_set_auto_flush(…)

rpma_peer_cfg_set_ddio(…)

rpma_peer_cfg_set_odp(…)

▪ Blocking/non-blocking API

rpma_peer_cfg_set_blocking(blocking_API_calls)

int rpma_socket_fd(rpma_socket)

int rpma_conn_fd(rpma_conn, fd_type)

• either conn_status fd or conn_next_completion fd

• file descriptors will allow making use of generally available

scalable I/O event notification mechanisms

MESSAGING

rpma_conn_recv_setup(connection, memory_local_handle, offset, entries_num, entry_size)

• receive buffers setup

rpma_conn_recv_payload(connection, memory_local_handle, offset, size)

• access to received data

rpma_conn_recv_ack(memory_local_handle, offset)

• mark memory buffer to be reused for next incoming message

rpma_conn_send(memory_local_handle, offset, size, completion)

• post a send request to the remote side

librpma API

OpenFabrics Alliance Workshop 202013

rpma_next_completion(&operation, &status)

EXAMPLES

OpenFabrics Alliance Workshop 202014

RPMA WRITE IN BLOCKING MODE
Write to the remote persistent memory followed by Flush

OpenFabrics Alliance Workshop 202015

memory_local_handle *src;

memory_remote_handle *dst;

…

/* local write to memory described by src */

/* posting a WRITE */

rpma_write(conn, user_context, dst, offset_dst, src, offset_src, len, RPMA_OP_FLAG_NO_COMPLETION);

/* post a FLUSH for flushing the preceding WRITE to persistence */

rpma_flush(conn, user_context, dst, offset_dst, len, RPMA_FLUSH_TYPE_PERSISTENT, RPMA_OP_FLAG_COMPLETION);

/* wait for the FLUSH to complete */

rpma_next_completion(conn, &op_context, &op, &status);

assert(op == RPMA_OP_FLUSH && status == RPMA_OP_STATUS_OK && op_context == user_context);

…

TARGET NODE MEMORY MANAGEMENT
Memory Setup and Serialization

OpenFabrics Alliance Workshop 202016

…

void *pmem_ptr;

char payload[256];

size_t payload_size;

memory_local_handle *dst;

…

pmem_ptr = pmem2_map_get_address(map);

…

rpma_memory_new(peer, pmem_ptr, pmem_size, RPMA_MR_WRITE_DST, RPMA_MR_PLT_PERSISTENT, &dst);

…

rpma_memory_serialize(dst, payload);

/* send data to initiator node to let know memory registration in remote location */

/* target node ready for incoming remote operations - READ/WRITE/FLUSH */

…

INITIATOR NODE MEMORY MANAGEMENT
Memory Setup, Memory Deserialization

OpenFabrics Alliance Workshop 202017

char mem_buff[] = “Test”;

memory_local_handle *src;

memory_remote_handle *dst;

…

/* register mem to be copied to remote node */

rpma_memory_new(peer, mem_buff, len, RPMA_MR_WRITE_SRC, RPMA_MR_PLT_VOLATILE, &src);

…

/* create remote memory handle based on data received from target node */

rpma_memory_deserialize(payload, payload_size, &dst);

…

/* initiator and target nodes ready for remote operations - READ/WRITE/FLUSH */

CONNECTION SETUP AND CONNECTING TO THE REMOTE NODE

OpenFabrics Alliance Workshop 202018

…

char recv_buff[CLIENT_BUFF_SIZE];

memory_local_handle *recv;

…

/* initialize connection */

rpma_conn_setup(peer, SERVER_ADDR, SERVER_PORT, &conn);

…

/* receive buffers setup */

rpma_memory_new(peer, recv_buff, CLIENT_BUFF_SIZE, RPMA_MR_WRITE_DST, RPMA_MR_PLT_VOLATILE, &recv);

rpma_conn_recv_setup(conn, recv, 0 /* offset */, 1, CLIENT_BUFF_SIZE);

/* establish the connection */

struct rpma_conn_cfg *conn_cfg;

rpma_conn_cfg_new(&conn_cfg);

rpma_conn_cfg_set_sq_size(conn_cfg, 10);

rpma_conn_cfg_set_rq_size(conn_cfg, 10);

rpma_conn_cfg_set_cq_size(conn_cfg, 10);

rpma_connect(conn, conn_cfg);

rpma_conn_cfg_delete(&conn_cfg);

…

THANK YOU
Tomasz Gromadzki, Software Architect

Jan M. Michalski, Software Engineer

Intel Corporation

https://github.com/pmem/rpma

https://github.com/pmem/rpma

LEGAL NOTICE AND DISCLAIMERS

▪ This document contains information on products in the design phase of development. The information here is subject to change
without notice. Do not finalize a design with this information.

▪ No License (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document

▪ Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Performance varies depending on system configuration. Learn more at intel.com, or from the OEM or retailer.

▪ No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

▪ You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which
includes subject matter disclosed herein.

▪ No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The
products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

▪ Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

▪ Intel, the Intel logo, Intel Xeon, and Optane Persistent Memory are trademarks of Intel Corporation in the U.S. and/or other countries.

▪ *Other names and brands may be claimed as property of others.

▪ © 2020 Intel Corporation.

20 OpenFabrics Alliance Workshop 2020

BACKUP

OpenFabrics Alliance Workshop 202021

New RDMA verbs (IETF/IBTA) Newly identified workloads

▪ The RDMA Flush operation requests that
all bytes in a specified region are to be
made persistent and/or globally visible

▪ The RDMA Verify* operation requests
that all bytes in a specified region are to
be read from the underlying storage and
that an integrity hash be calculated.

▪ The Atomic Write operation provides a
block of data (8 bytes) which is placed to
a specified region atomically

*) defined only by IETF so far

▪ PMEM used in the context of post SEND

and post RECV

▪ Connection’s private data utilize for

- nodes’ capabilities exchange

- r_key exchange

▪ scatter/gather list to combine an

application payload and library’s private

data in one network transaction

NEW API INSPIRATIONS

OpenFabrics Alliance Workshop 202022

PUSH METHOD OVER TRADITIONAL RDMA

23 OpenFabrics Alliance Workshop 2020

• RDMA Write ensures only that data

are delivered to RNIC (no ADR)

• RDMA Read* forces data to be pushed out

form RNIC with PCIe Writes

• PCIe Read flushes all PCIe Writes

to destination LLC in case of DDIO** (no to ADR)

• DDIO off ensures data are moved

to persistent memory automatically

Target node

ADR

Initiator
node

RNIC
IO

Controller
LLCLLC

RDMA
Write

LLCLLCiMC

PCIe
Write

RDMA
Read PCIe

Read
Read

Read

DDIO
Write

No-DDIO
Write

*) 8 bytes RDMA/PCIe Read is used for that purpose
**) Intel® Data Direct I/O Technology

