
USING SPDK TO OPTIMIZE YOUR STORAGE STACK

Seth Howell and Alexey Marchuk

Intel and Nvidia

2020 OFA Virtual Workshop



AGENDA

▪ Design Goals and Primitives

▪ Initiator Side Port Failover

▪ RDMA performance optimizations for NVMe-oF protocol:

• Non-signaled RDMA_WRITE operation

• Work requests batching

▪ Data Integrity:

• Overview of Data Integrity, T10DIF format

• SPDK SW implementation (DIF insert or strip)

• T10DIF HW offload using NVIDIA Mellanox NIC

© OpenFabrics Alliance2



NVME-OF DESIGN

© OpenFabrics Alliance3



SPDK NVME-OF DESIGN GOALS

▪ Userspace Implementation of NVMe-oF Stack

• Ideal for RDMA

▪ Lockless in the I/O path

▪ Scalable (Efficiently handle many connections to many devices)

▪ Simple and Efficient Transport Plugin Interface

• Pluggable at two levels Transport and Provider

▪ BSD Licensed

4 © OpenFabrics Alliance



SPDK NVME-OF PRIMITIVES

▪ Globally available

• Subsystem – Some collection of NVMe controllers 
and namespaces. Unit of access control for NVMe
connections

• Transport – Function table and constants used to 
define an NVMe transport (e.g. RDMA, FC)

▪ Per-Thread

• Subsystem Poll Group – per thread context 
containing controller information

• Transport Poll Group – per thread context containing 
information needed to communicate over the 
transport. Unit for polling for more work on qpairs.*

• qpair – Unique object only accessible from a single 
thread. On the target this object must belong to a poll 
group SPDK Target

NVMe-oF Subsystem

Transports (RDMA, TCP, FC)

Thread

Transport poll group

Qpair Qpair Qpair

Subsystem 
poll group

Ns1 
ctx

Ns3 
ctx

Thread

Transport poll group

Qpair Qpair Qpair

Subsystem 
poll group

Ns1 
ctx

Ns2 
ctx

Form Fits Function

© OpenFabrics Alliance5



RDMA PERFORMANCE OPTIMIZATIONS FOR 

NVME-OF PROTOCOL

6 © OpenFabrics Alliance



INITIATOR-SIDE MULTIPATH SUPPORT 

▪ spdk_nvme_ctrlr_set_trid API allows users to change the TRID (IP address and port) of an 

NVMe controller with minimal application overhead.

▪ All qpairs remain present in the initiator, but are reconnected to the new Transport ID.

▪ Useful for load balancing or failover in case of a target side network event.

7 © OpenFabrics Alliance

Target Side Target Side

1. spdk_nvme_ctrlr_fail
2. spdk_nvme_ctrlr_set_trid
3. spdk_nvme_ctrlr_reset



8 © OpenFabrics Alliance

▪ In IO Read flow, RDMA_WRITE is 

followed by RDMA_SEND
• Completion for RDMA_WRITE can be skipped

▪ Reduces the amount of PCI 

transactions 

▪ Saves on processing of extra Work 

Completion, increases IOPS in read 

flow: up to 15% on ARM

▪ Merged to SPDK in v19.07

NON-SIGNALED RDMA_WRITE OPERATION

NVMF 
initiator NIC

NVMF 
targetNIC

Post NVME 

command, wait 

for completion



WORK REQUESTS BATCHING

▪ Every IO operation requires posting of 1 or more SEND 
and 1 RECV work requests

▪ The default approach for WQE (work request element ) 
transferring requires separate MMIO for each WQE –
update of  “door bell” register

▪ WQE batching reduces CPU utilization and PCI 
bandwidth by using single “door bell” update for 
multiple WQEs

▪ WQE batching improves heavy load cases:
• NVMEoF target: when receive multiple IO requests in one ibv_poll_cq

• NVMEoF initiator: when the user submits multiple IO requests before 
polling cq

▪ Benefit on ARM:
• Randread: up to 5% more IOPS

• Randwrite: up to 12% more IOPS

• NVMEoF target, 64 queue depth, 4k payload

9 © OpenFabrics Alliance

In SPDK NVMEoF target and initiator

post queued 

WQEs

queue WQE queue WQE queue WQE

post queued 

WQEs

post queued 

WQEs

With batching

post WQE post WQE post WQE

Without batching



DATA INTEGRITY

10 © OpenFabrics Alliance



DATA INTEGRITY ERRORS

▪ Any data corruption is fatal to business logic

▪ Backups may contain bad data

▪ Data might be corrupted in any element of a data flow chain

▪ OS/driver/FW bugs - individual checks in each element can miss data integrity errors

▪ End-to-end data protection – proactive error detection:

• Write operation – the application is notified about the data corruption and can repeat the operation

• Read operation – it is better to receive an error and not read the data rather than reading corrupt data

• End-to-end protection is verified by NVME controller on read/write operations

▪ Protection information is stored in metadata that needs to come together with data block

11 © OpenFabrics Alliance

Why should we bother?

SPDK
NVMEoF

target
wire

NVME 
disc

SPDK
NVME 
driver

App
SPDK

NVME 
driver

NIC NIC



T10DIF IN NVME

▪ T10DIF - 8 bytes field with data protection for each data block (typically 512 or 4096 bytes)

▪ Guard tag

• 2 bytes CRC, covers data block

▪ Application tag

• 2 bytes, user defined content, opaque

▪ Reference tag

• Associates data block with an address, protects against misdirect block transfers. Usage depends on the PI type

▪ Protection information (PI) type

• Type 0: no end-to-end data protection

• Type 1: Ref tag must match 4 least significant bytes of LBA, incremented for subsequent logical blocks.

• Type 2: Ref tag can be initialized to any value. Ref tag extends App tag.

• Type 3: Ref tag for each subsequent logical block remains the same. Only Guard tag is verified

▪ DIF: PI is contiguous with data block. Extended LBA format

▪ DIX: PI is stored in a separate buffer. Not supported by NVMEoF specification

12 © OpenFabrics Alliance

Standard overview

Data block (512 or 4096 bytes)
GUARD 

TAG

APP 

TAG

REFERENCE 

TAG

2 bytes 2 bytes 4 bytes

8 bytes T10DIF



PROTECTION INFORMATION MODES

▪ Insert or strip mode
• Metadata/PI capabilities are hidden from the host

• Read operation: verify & strip PI received from NVME controller

• Write operation: generate & insert PI after each data block before writing to the NVME controller

13 © OpenFabrics Alliance

E2E and SPDK insert or strip

App
data block

NVME 

driver

PI

verify/generate

Host

NVMF 

controller

NVME 

disk
Target

data block PI

verify

data block PI

RDMA/TCP

End-to-end mode

App
data block

NVME 

driver
Host

data block

RDMA/TCP

SPDK DIF insert or strip mode

NVMF 

controller

NVME 

disk
Target

data block PI

verify
verify & strip /
generate & insert



RDMA SW T10DIF IMPLEMENTATION

▪ Initiator writes/reads data without metadata, PI properties of namespace are hidden

▪ Verify or generate CRC16 (optimized by Intel ISA-L)

▪ Limitations:

• In-capsule data is not supported – no space for metadata

• Only PI type 1 is supported since remote side doesn’t fill App/Ref tag. Ref tag is set to 4 LS bytes of start LBA

▪ Advantage: out of box solution suitable for applications which don’t support PI

▪ Disadvantage: low performance due to SW calculation, high CPU load

▪ Merged to SPDK in v19.10

14 © OpenFabrics Alliance

Insert or strip mode



HW SIGNATURE OFFLOAD

▪ User space API for T10DIF offload:

• Signature is property of memory layout. Signature MR (SIGMR) describes an IO transaction.

• Two domains are defined in SIGMR – memory and wire.

• Each domain can be configured with PI properties.

• Combination of wire and memory domains allows us to use different scenarios – PI can be added/removed/verified in one 

domain and removed in another one. Can be used to support DIX in NVMEoF

• Register SIGMR:

• Build SGL with pointers to data and metadata buffers and local memory key

• Register SIGMR using send request with special opcode

• Use address and local/remote key from the registered SIGMR in data path

• Invalidate SIGMR using send request with special opcode once IO operation is completed

▪ Roadmap:

• Upstreaming of signature API to rdma-core (2020) – implemented in Mellanox Direct Verbs provider, an extension of UMR 

(User Memory Region) API

• Enabling of T10DIF HW offload in SPDK

15 © OpenFabrics Alliance

Signature MR



0

500

1000

1500

2000

2500

3000

3500

4000

4096 16384 131072

B
W

, M
B

/s

IO size

Read, single core performance

DIF HW Offload DIF Software

T10DIF PERFORMANCE RESULTS

16 © OpenFabrics Alliance

SW and HW offload

Queue depth: 128
Block size: 4096+8
Disk: Samsung 
PM1725b
Platform: x86

Higher is better

HW acceleration for DIF data 
protection
overperforms SW by 200%



THANK YOU
Seth Howell and Alexey Marchuk

Intel and Nvidia

2020 OFA Virtual Workshop



BACKUP

18 © OpenFabrics Alliance



NVME/NVMEOF END-TO-END DATA PROTECTION

▪ DIF: PI is contiguous with data block

▪ DIX: PI is stored in a separate buffer. Not supported by NVMEoF

▪ Namespace PI properties:

• PI type (0,1,2,3)

• PI placement: first 8 bytes of metadata or last 8 bytes of metadata – if the namespace is formatted with more than 8 bytes of 

metadata

• PI transfer: metadata is transferred at the end of data block (extended LBA format) or in a separate buffer

▪ NVME read/write command properties:

• Protection Information Action (PRACT) – determines whether NVME driver should strip PI (read) or insert PI (write) or verify it 

and pass as is

• Protection Information Check (PRCHK) – defines fields that needs to be checked – bitwise combination of Guard, App and 

Ref tags identifiers.

• Initial Logical Block Reference Tag (ILBRT) – specifies the initial value to be used in E2E data protection

• Logical Block Application Tag Mask (LBATM) – App tag mask, specifies which bits of App tag will be checked

• Logical Block Application Tag (LBAT) – App tag value, to be checked with App tag contained in metadata

19 © OpenFabrics Alliance

DIF/DIX



NVME PI TYPES

▪ Protection information (PI) type

• Type 0: no end-to-end data protection

• Type 1: Ref tag must match Initial Logical Block Reference Tag (ILBRT) or Expected Initial Logical Block Reference Tag 

(EILBRT) field in NVME command. Ref tag must be incremented for each subsequent logical block in this command. ILBRT 

or EILBRT must be initialized to 4 least significant bytes of LBA.

• Type 2: The same as type 1 except of ILBRT or EILBRT may be initialized to any value. Ref tag extends App tag.

• Type 3: Ref tag for each subsequent logical block remains the same. 

▪ Tags impact on verification:

• For PI types 1, 2 if App tag has a value of 0xFFFF then all protection information checks are disabled

• For PI type 3 if App tag has a value of 0xFFFF and Reference tag has a value of 0xFFFFFFFF then all protection information 

checks are disabled

• the command may be aborted with status Invalid Field in Command if PRCHK bit which enables checking of App tag is set 

and PI type is 3

20 © OpenFabrics Alliance

In details


