
TRIEC: AN EFFICIENT ERASURE CODING NIC OFFLOAD 

PARADIGM BASED ON TRIPARTITE GRAPH MODEL

Xiaoyi Lu and Haiyang Shi

The Ohio State University

{lu.932, shi.876}@osu.edu

2020 OFA Virtual Workshop



CHALLENGES OF DATA EXPLOSION

2 © OpenFabrics Alliance

0

20

40

60

80

100

120

140

160

180

200

0.00

0.20

0.40

0.60

0.80

1.00

Year

Disk Drive Cost and Annual Data Size with Time

Hard Disk Drives

Solid State Drives

Annual Data Size

P
ri

ce
 (

$
/G

B
)

D
at

a 
Si

ze
 (

ZB
)

Disk Drive Prices (1955-2019), https://jcmit.net/diskprice.htm
Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

https://jcmit.net/diskprice.htm


RETHINKING OF DISTRIBUTED STORAGE SYSTEMS

3 © OpenFabrics Alliance

▪ No Fault Tolerance

❖High performance

❖Not reliable

▪ N-way Replication

• Tolerate up to 𝑛 − 1 node failures

• Performance degradation

• Large storage overhead Pe
rf

o
rm

an
ce

Storage Overhead

No FT

Replication

1 𝑛

Erasure Coding (EC)



EC BASICS - REED-SOLOMON CODE

4 © OpenFabrics Alliance



REED-SOLOMON (RS) CODE

5 © OpenFabrics Alliance

▪ 𝑅𝑆(𝑘,𝑚)

• Widely used (RAID, Microsoft Azure, HDFS 
3.x)

• Encodes on 𝑘 data chunks to generate 𝑚
parity chunks

• Decodes on any 𝑘 data/parity chunks to 
recover the original data

▪ Storage Overhead of Common Codes

• RS(4,2) => 1.5x overhead

• RS(6,3) => 1.5x overhead

Reed-Solomon EC for k=4 and m=2 

01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01

1B 1C 12 14

1C 1B 14 12

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

51 52 53 49

55 56 57 25Original Data

Generator 

Matrix

Encoded Data

× =
Data Chunks

Parity Chunks



REED-SOLOMON (RS) CODE

6 © OpenFabrics Alliance

Reed-Solomon EC for k=4 and m=2 

01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01

1B 1C 12 14

1C 1B 14 12

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

51 52 53 49

55 56 57 25Original Data

Generator 

Matrix

Encoded Data

× =

▪ 𝑅𝑆(𝑘,𝑚)

• Widely used (RAID, Microsoft Azure, HDFS 
3.x)

• Encodes on 𝑘 data chunks to generate 𝑚
parity chunks

• Decodes on any 𝑘 data/parity chunks to 
recover the original data

▪ Storage Overhead of Common Codes

• RS(4,2) => 1.5x overhead vs. 3x in 3-way 
replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way 
replication



REED-SOLOMON (RS) CODE

7 © OpenFabrics Alliance

Reed-Solomon EC for k=4 and m=2 

01 00 00 00

00 01 00 00

1B 1C 12 14

1C 1B 14 12

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

51 52 53 49

55 56 57 25

Original Data Survived Data

× =

01 00 00 00

00 01 00 00

8D F6 7B 01

F6 8D 01 7B

×

01 00 00 00

00 01 00 00

8D F6 7B 01

F6 8D 01 7B

×

Inverse Matrix

Inverse Matrix

▪ 𝑅𝑆(𝑘,𝑚)

• Widely used (RAID, Microsoft Azure, HDFS 
3.x)

• Encodes on 𝑘 data chunks to generate 𝑚
parity chunks

• Decodes on any 𝑘 data/parity chunks to 
recover the original data

▪ Storage Overhead of Common Codes

• RS(4,2) => 1.5x overhead vs. 3x in 3-way 
replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way 
replication



EC: THE ALTERNATIVE RESILIENCE TECHNIQUE

8 © OpenFabrics Alliance

▪ Exploiting EC will introduce both computation overhead and

communication overhead

Client

Write(Encoding) Read with Erasures (Decoding)

Client
Computation Computation

Communication Communication

Are there any good approaches to improve EC performance?



EC OFFLOAD ON SMARTNICS

9 © OpenFabrics Alliance



EC OFFLOAD ON SMARTNICS

10 © OpenFabrics Alliance

▪ Promising Capability on Modern SmartNICs

❖Mellanox InfiniBand ConnectX-4 and later

• About 100 supercomputers in latest TOP500 are equipped with 

Mellanox InfiniBand NICs



OVERVIEW EC CAPABILITIES ON MODERN SMARTNICS

11 © OpenFabrics Alliance

Initiator Receiver	Group

Memory	Access	by	CPU (R)DMA

Post	Send/EC

Send	(D1)
Send	(D2)
Send	(D3)

EC	(D1-3)

Send	(P1)

Send	(P2)

Post	ECSend

CPU MEM NIC NICs MEMs CPUs

Initiator Receiver	Group

ECSend

(D1-3)

CPU MEM NIC NICs MEMs CPUs

Hardware	ACK

EC

Incoherent and Coherent EC Calculation and Networking

▪ Coherent EC Calculation 

and Networking

❖Less CPU involvement

❖Less DMA operations



RETHINKING TRADITIONAL EC PARADIGM ON SMARTNICS

12 © OpenFabrics Alliance

𝑁𝑦
𝑥 Node y in layer x

Exclusive OR

Erasure Coder

Data Chunk

Parity Chunk

Intermediate
Chunk

EC
𝑁1
1

𝑁𝑎
1

𝑁𝑏
1

𝑁𝑐
1

𝑁𝑑
1

𝑁𝑒
1

𝑁𝑓
1

𝑁𝑎
2

𝑁𝑏
2

𝑁𝑐
2

𝑁𝑑
2

𝑁𝐼𝐶

𝑁1
2

𝑁2
2

𝑁𝑘
2

𝑁𝑘+1
2

𝑁𝑘+𝑚
2

…k … EC
…

…

k

m

• Encoding Procedure
❖Collect 𝑘 data chunks

❖Post encode-and-send

• One set of nodes (e.g., clients) 
perform EC encoding calculations

• The other set of nodes (e.g., data 
nodes) receive encoded chunks

• We name it as Bipartite Graph 
Based EC (BiEC) Paradigm



RETHINKING TRADITIONAL EC PARADIGM ON SMARTNICS

13 © OpenFabrics Alliance

▪ Decoding Procedure

❖Fetch 𝑘 survived chunks

❖Decode to reconstruct corrupt chunks

• One set of nodes (e.g., data nodes) 

send requested chunks

• The other set of nodes (e.g., clients) 

receive and decode to reconstruct

• Follows Bipartite Graph Based EC 

(BiEC) Paradigm

𝑁𝑦
𝑥 Node y in layer x

Exclusive OR

Erasure Coder

Data Chunk

Parity Chunk

Intermediate
Chunk

EC

Corrupt Node

Recovered
Chunk

𝑁1
1

𝑁𝑎
1

𝑁𝑏
1

𝑁𝑐
1

𝑁𝑑
1

𝑁𝑒
1

𝑁𝑓
1

𝑁𝑎
2

𝑁𝑏
2

𝑁𝑐
2

𝑁𝑑
2

𝑁𝐼𝐶

𝑁1
2

𝑁2
2

𝑁𝑘
2

𝑁𝑘+1
2

𝑁𝑘+𝑚
2

……EC

…

…

…



LIMITATIONS AND CHALLENGES

14 © OpenFabrics Alliance



LIMITATIONS OF BIEC PARADIGM

15 © OpenFabrics Alliance

▪ Limitation 1: Lack of parallelism

▪ Limitation 2: Treat a NIC as a power processor, not 

fully exploit networked resources

𝑁1
1

𝑁𝑎
1

𝑁𝑏
1

𝑁𝑐
1

𝑁𝑑
1

𝑁𝑒
1

𝑁𝑓
1

𝑁𝑎
2

𝑁𝑏
2

𝑁𝑐
2

𝑁𝑑
2

𝑁𝐼𝐶

𝑁1
2

𝑁2
2

𝑁𝑘
2

𝑁𝑘+1
2

𝑁𝑘+𝑚
2

… … EC
…

…



LIMITATIONS OF EXISTING APIS FOR EC ON SMARTNICS

16 © OpenFabrics Alliance

▪ Encode and Send Primitive

❖Offload encoding operation and data transmissions simultaneously

• Limitation 3: No receive and decode primitive support



CHALLENGES

1. Can we propose a better EC paradigm, which is able to exploit the networked 

resources in an optimized approach?

2. If such an EC paradigm exists, how can we achieve better overlapping?

3. Can such a new EC paradigm be applied uniformly to both encoding and decoding 

procedures?

4. Are there any additional challenges to co-design applications with the proposed EC 

paradigm?

17 © OpenFabrics Alliance



TRIEC IDEAS

18 © OpenFabrics Alliance



TRIPARTITE GRAPH BASED EC PARADIGM (TRIEC)

19 © OpenFabrics Alliance

Key Observation: An EC computation can be decomposed into sub EC calculations, 

which are possible to be performed on a set of nodes in parallel

▪ Bipartite EC graph transforms to Tripartite EC graph

▪ We name it as Tripartite Graph Based EC Paradigm



TRIEC FOR ENCODING

20 © OpenFabrics Alliance

▪ Encoding Procedure
❖Client (e.g., 𝑁1

1) sends each data chunk

❖Data node in layer-2 (e.g., 𝑁1
2) posts 

encode-and-send

❖Data node in layer-3 (e.g., 𝑁1
3) sums up 

𝑘 intermediate chunks to generate a 

parity chunk

𝑁𝑦
𝑥 Node y in layer x

Exclusive OR

Erasure Coder

Data Chunk

Parity Chunk

Intermediate
Chunk

EC 𝑁1
1

𝑁𝑎
1

𝑁𝑏
1

𝑁𝑐
1

𝑁𝑑
1

𝑁𝑒
1

𝑁𝑓
1

𝑁𝑎
2

𝑁𝑏
2

𝑁𝑐
2

𝑁𝑑
2

𝑁1
2

𝑁2
2

𝑁𝑎
3

𝑁𝑏
3

𝑁𝑐
3

𝑁1
3

𝑁𝑚
3𝑁𝑘

2

𝑁𝑑
3

…

𝑁𝐼𝐶

𝑁𝐼𝐶

𝑁𝐼𝐶

…

EC

…

EC

…

…
…

EC

m



TRIEC FOR DECODING

21 © OpenFabrics Alliance

▪ Decoding Procedure
❖Data node in layer-3 (e.g., 𝑁1

3) decodes 

to generate 𝑝 intermediate chunks

❖Data node in layer-2 (e.g., 𝑁1
2) fetches 𝑘

intermediate chunks and sums them up 

to reconstruct corrupt chunk

❖Client in layer-1 (e.g., 𝑁1
1) gets 

recovered chunks

𝑁𝑦
𝑥 Node y in layer x

Exclusive OR

Erasure Coder

Data Chunk

Parity Chunk

Intermediate
Chunk

EC

Corrupt Node

Recovered
Chunk

...

...

...

𝑁1
1

𝑁𝑎
1

𝑁𝑏
1

𝑁𝑐
1

𝑁𝑑
1

𝑁𝑒
1

𝑁𝑓
1

𝑁𝑒
1

𝑁𝑎
2

𝑁𝑏
2

𝑁𝑐
2

𝑁𝑑
2

𝑁𝑒
2

𝑁𝑓
2

𝑁1
2

𝑁𝑝
2

𝑁𝑎
3

𝑁𝑏
3

𝑁𝑐
3

𝑁1
3

𝑁𝑥
3

𝑁𝑘
3

𝑁𝐼𝐶

𝑁𝐼𝐶

𝑁𝐼𝐶

EC

…

EC

…

EC

…

…

…

…

TriEC can be uniformly applied to 
both encoding and decoding



TRIEC-CACHE

22 © OpenFabrics Alliance



ARCHITECTURE OVERVIEW OF TRIEC-CACHE

23 © OpenFabrics Alliance

▪ Based on memcached (v1.5.12)

▪ Interleaved Architecture

❖EC Group: Leader, data processes, and 

parity processes

❖Interleave EC groups into the cluster such 

that data processes and parity processes are 

evenly distributed

❖Balance workload and resource utilizations

Node 1 Node 2 Node 3 Node 4 Node 5

Group 1

Group 2

Group 3

Group 4

Group 5

𝐿𝑖 Leader of 𝑖th Group 𝐷𝑖 𝑖th Data Chunk

𝑖th Parity Chunk𝑃𝑖

𝐿1
𝐷1

𝐷2 𝐷3 𝑃1 𝑃2

𝐷1
𝐷2 𝐷3 𝑃1𝑃2

𝐿2

𝐷1
𝐷2 𝐷3𝑃1 𝑃2

𝐿3

𝐷1
𝐷2

𝐿4

𝐷1

𝐿5𝐷2 𝐷3 𝑃1 𝑃2

𝐷3 𝑃1 𝑃2

Corrupt Chunk



ARCHITECTURE OVERVIEW OF TRIEC-CACHE

24 © OpenFabrics Alliance

▪ set(key, value)

❖Implemented with encode-and-send 

primitive

▪ get(key)

❖No EC operations

▪ get(key) with erasures

❖Involve data recoveries

❖Implemented with recv-and-decode 

primitive

Node 1 Node 2 Node 3 Node 4 Node 5

Group 1

Group 2

Group 3

Group 4

Group 5

𝐿𝑖 Leader of 𝑖th Group 𝐷𝑖 𝑖th Data Chunk

𝑖th Parity Chunk𝑃𝑖

Client

𝐷1
𝐷2 𝐷3 𝑃1𝑃2

𝐿2

𝐷1
𝐷2

𝐿4𝐷3 𝑃1 𝑃2

𝐿1

𝐷1
𝐷2 𝐷3

𝑃1
𝑃2

𝐿3

𝐷1
𝐷2

𝐷3

𝐷3

𝐷2 𝐷1
𝐿5

𝑃1 𝑃2

𝑃1 𝑃2

Corrupt Chunk



RECOVERY MECHANISM OF BIEC AND TRIEC

25 © OpenFabrics Alliance

Out-of-Band Recovery for BiEC In-Band Recovery for TriEC

• Out-of-Band Recovery
❖Write back

❖Recover in the background

• In-Band Recovery
❖No extra computations or 

communications



OPTIMIZATIONS WITH MLNX OFED

26 © OpenFabrics Alliance

▪ Avoidance of Sending Unrequested 

Chunks

❖Nullify the work requests to avoid sending out 

unrequested chunks

▪ EC Calculator Cache

❖Initializing EC calculators is very expensive 

with Mellanox’s EC offload APIs

❖Static EC calculator cache vs. dynamic EC 

calculator cache

0

1000

2000

3000

4000

5000

6000

7000

L
at

en
cy

 (
u
s)

No Cache

Dynamic Cache

Static Cache

Performance Impact of Calculator Cache 
(OSU RI2 Cluster)



EVALUATION

27 © OpenFabrics Alliance



MICROBENCHMARK – TRIEC ENCODING

28 © OpenFabrics Alliance

▪ TriEC reduces the encoding time with RS(12,4) by 23.5% - 45.1%

0
500

1000
1500
2000
2500
3000

BiEC TriEC

E
x

ec
u

ti
o
n

 T
im

e 
(m

s)

Encoding Performance Comparisons for RS(12,4) with Diverse Chunk Sizes (OSU RI2 Cluster)



MICROBENCHMARK – TRIEC ENCODING

29 © OpenFabrics Alliance

0

1500

3000

4500

6000
5
1

2

2
K

B

8
K

B

3
2

K
B

1
2

8
K

B

5
1

2
K

B

2
M

B

8
M

B

1
K

B

4
K

B

1
6

K
B

6
4

K
B

2
5

6
K

B

1
M

B

4
M

B

5
1

2

2
K

B

8
K

B

3
2

K
B

1
2

8
K

B

5
1

2
K

B

2
M

B

8
M

B

1
K

B

4
K

B

1
6

K
B

6
4

K
B

2
5

6
K

B

1
M

B

4
M

B

(3,2) (6,3) (8,3) (10,4)

BiEC TriEC

E
x
ec

u
ti

o
n
 T

im
e 

(m
s)

Encoding Performance Comparisons with Varied Configurations and Chunk Sizes (OSU RI2 Cluster)

Up to 1.29x Up to 1.43x Up to 1.61x Up to 1.72x

▪ Evaluate TriEC with all widely-used EC configurations



MICROBENCHMARK – TRIEC DECODING

30 © OpenFabrics Alliance

▪ TriEC reduces the decoding time with RS(12,4) by 18.6% - 64.6%

E
x

ec
u

ti
o
n

 T
im

e 
(m

s)

Performance Comparisons for Recovering Four Data Chunks for RS(12,4) with Diverse Chunk 
Sizes (OSU RI2 Cluster)

0
1000
2000
3000
4000
5000
6000

BiEC TriEC



MICROBENCHMARK – TRIEC DECODING

31 © OpenFabrics Alliance

0

3000

6000

9000

12000
5
1

2

2
K

B

8
K

B

3
2

K
B

1
2

8
K

B

5
1

2
K

B

2
M

B

8
M

B

1
K

B

4
K

B

1
6

K
B

6
4

K
B

2
5

6
K

B

1
M

B

4
M

B

5
1

2

2
K

B

8
K

B

3
2

K
B

1
2

8
K

B

5
1

2
K

B

2
M

B

8
M

B

1
K

B

4
K

B

1
6

K
B

6
4

K
B

2
5

6
K

B

1
M

B

4
M

B

(3,2) (6,3) (8,3) (10,4)

BiEC TriEC

Performance Comparisons for Recovering 𝒎 Data Chunks with Varied Configurations and Chunk Sizes (OSU 
RI2 Cluster)

E
x
ec

u
ti

o
n
 T

im
e 

(m
s)

m=2 m=3 m=3 m=4

Up to 2.33x Up to 2.26x Up to 2.17x Up to 2.16x

▪ Evaluate TriEC with all widely-used EC configurations



THROUGHPUT OF TRIEC-CACHE

32 © OpenFabrics Alliance

▪ TriEC speeds up the overall throughput performance by up to 13.3% for 

equal-shares, 14.8% for read-mostly, and 13.9% for read-only workloads.

Throughput Comparisons for RS(6, 3) (OSC Pitzer Cluster)

BiEC TriEC

1KB 4KB 16KB1KB 4KB 16KB1KB 4KB 16KB

T
h
ro

u
g
h
p
u
t

(1
0
3

o
p

s/
s)

1KB 4KB 16KB1KB 4KB 16KB1KB 4KB 16KB0

40

80

120

r:w=50:50 r:w=95:5 r:w=100:0 r:w=50:50 r:w=95:5 r:w=100:0

1% of reads with one erasure 1% of reads with three erasures



CONCLUSION

33 © OpenFabrics Alliance



Haiyang Shi and Xiaoyi Lu. TriEC: Tripartite Graph Based Erasure Coding NIC Offload. In Proceedings of the 32nd International Conference for High 

Performance Computing, Networking, Storage and Analysis (SC), 2019. (Best Student Paper Finalist)

CONCLUSION AND FUTURE WORK

34 © OpenFabrics Alliance

▪ A new EC NIC offload paradigm based on tripartite graph model (i.e., TriEC)

▪ A new receive-and-decode primitive on top of Mellanox EC NIC offload APIs

▪ Co-design a TriEC-based key value store based on Memcached

▪ TriEC reduces the average write latency by up to 23.2% and the recovery time by up to 37.8%

even with only 1% failure occurrences

▪ In the future, we plan to apply TriEC to other storage systems and hardware platforms



ACKNOWLEDGEMENT

35 © OpenFabrics Alliance

▪ We would like to thank Ohio Supercomputer Center (OSC) for providing the cluster access.

▪ We would also like to thank Mellanox for donating SmartNICs. 

▪ We also thank the anonymous reviewers for their precious feedback to this work.

▪ This work is supported in part by National Science Foundation grant #CCF-1822987. 



THANK YOU
Xiaoyi Lu, Research Assistant Professor

The Ohio State University

2020 OFA Virtual Workshop


