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CHALLENGES OF DATA EXPLOSION
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RETHINKING OF DISTRIBUTED STORAGE SYSTEMS
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▪ No Fault Tolerance

❖High performance

❖Not reliable

▪ N-way Replication

• Tolerate up to 𝑛 − 1 node failures

• Performance degradation

• Large storage overhead Pe
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Erasure Coding (EC)



EC BASICS - REED-SOLOMON CODE

4 © OpenFabrics Alliance



REED-SOLOMON (RS) CODE
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▪ 𝑅𝑆(𝑘,𝑚)

• Widely used (RAID, Microsoft Azure, HDFS 
3.x)

• Encodes on 𝑘 data chunks to generate 𝑚
parity chunks

• Decodes on any 𝑘 data/parity chunks to 
recover the original data

▪ Storage Overhead of Common Codes

• RS(4,2) => 1.5x overhead

• RS(6,3) => 1.5x overhead

Reed-Solomon EC for k=4 and m=2 
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REED-SOLOMON (RS) CODE
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Reed-Solomon EC for k=4 and m=2 
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▪ 𝑅𝑆(𝑘,𝑚)

• Widely used (RAID, Microsoft Azure, HDFS 
3.x)

• Encodes on 𝑘 data chunks to generate 𝑚
parity chunks

• Decodes on any 𝑘 data/parity chunks to 
recover the original data

▪ Storage Overhead of Common Codes

• RS(4,2) => 1.5x overhead vs. 3x in 3-way 
replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way 
replication



REED-SOLOMON (RS) CODE
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Reed-Solomon EC for k=4 and m=2 
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▪ 𝑅𝑆(𝑘,𝑚)

• Widely used (RAID, Microsoft Azure, HDFS 
3.x)

• Encodes on 𝑘 data chunks to generate 𝑚
parity chunks

• Decodes on any 𝑘 data/parity chunks to 
recover the original data

▪ Storage Overhead of Common Codes

• RS(4,2) => 1.5x overhead vs. 3x in 3-way 
replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way 
replication



EC: THE ALTERNATIVE RESILIENCE TECHNIQUE
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▪ Exploiting EC will introduce both computation overhead and

communication overhead

Client

Write(Encoding) Read with Erasures (Decoding)

Client
Computation Computation

Communication Communication

Are there any good approaches to improve EC performance?



EC OFFLOAD ON SMARTNICS
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EC OFFLOAD ON SMARTNICS
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▪ Promising Capability on Modern SmartNICs

❖Mellanox InfiniBand ConnectX-4 and later

• About 100 supercomputers in latest TOP500 are equipped with 

Mellanox InfiniBand NICs



OVERVIEW EC CAPABILITIES ON MODERN SMARTNICS
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Incoherent and Coherent EC Calculation and Networking

▪ Coherent EC Calculation 

and Networking

❖Less CPU involvement

❖Less DMA operations



RETHINKING TRADITIONAL EC PARADIGM ON SMARTNICS
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• Encoding Procedure
❖Collect 𝑘 data chunks

❖Post encode-and-send

• One set of nodes (e.g., clients) 
perform EC encoding calculations

• The other set of nodes (e.g., data 
nodes) receive encoded chunks

• We name it as Bipartite Graph 
Based EC (BiEC) Paradigm



RETHINKING TRADITIONAL EC PARADIGM ON SMARTNICS
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▪ Decoding Procedure

❖Fetch 𝑘 survived chunks

❖Decode to reconstruct corrupt chunks

• One set of nodes (e.g., data nodes) 

send requested chunks

• The other set of nodes (e.g., clients) 

receive and decode to reconstruct

• Follows Bipartite Graph Based EC 

(BiEC) Paradigm
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LIMITATIONS AND CHALLENGES
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LIMITATIONS OF BIEC PARADIGM
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▪ Limitation 1: Lack of parallelism

▪ Limitation 2: Treat a NIC as a power processor, not 

fully exploit networked resources
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LIMITATIONS OF EXISTING APIS FOR EC ON SMARTNICS
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▪ Encode and Send Primitive

❖Offload encoding operation and data transmissions simultaneously

• Limitation 3: No receive and decode primitive support



CHALLENGES

1. Can we propose a better EC paradigm, which is able to exploit the networked 

resources in an optimized approach?

2. If such an EC paradigm exists, how can we achieve better overlapping?

3. Can such a new EC paradigm be applied uniformly to both encoding and decoding 

procedures?

4. Are there any additional challenges to co-design applications with the proposed EC 

paradigm?
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TRIEC IDEAS
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TRIPARTITE GRAPH BASED EC PARADIGM (TRIEC)

19 © OpenFabrics Alliance

Key Observation: An EC computation can be decomposed into sub EC calculations, 

which are possible to be performed on a set of nodes in parallel

▪ Bipartite EC graph transforms to Tripartite EC graph

▪ We name it as Tripartite Graph Based EC Paradigm



TRIEC FOR ENCODING
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▪ Encoding Procedure
❖Client (e.g., 𝑁1

1) sends each data chunk

❖Data node in layer-2 (e.g., 𝑁1
2) posts 

encode-and-send

❖Data node in layer-3 (e.g., 𝑁1
3) sums up 

𝑘 intermediate chunks to generate a 

parity chunk
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TRIEC FOR DECODING
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▪ Decoding Procedure
❖Data node in layer-3 (e.g., 𝑁1

3) decodes 

to generate 𝑝 intermediate chunks

❖Data node in layer-2 (e.g., 𝑁1
2) fetches 𝑘

intermediate chunks and sums them up 

to reconstruct corrupt chunk

❖Client in layer-1 (e.g., 𝑁1
1) gets 

recovered chunks
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both encoding and decoding



TRIEC-CACHE
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ARCHITECTURE OVERVIEW OF TRIEC-CACHE
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▪ Based on memcached (v1.5.12)

▪ Interleaved Architecture

❖EC Group: Leader, data processes, and 

parity processes

❖Interleave EC groups into the cluster such 

that data processes and parity processes are 

evenly distributed

❖Balance workload and resource utilizations
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ARCHITECTURE OVERVIEW OF TRIEC-CACHE
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▪ set(key, value)

❖Implemented with encode-and-send 

primitive

▪ get(key)

❖No EC operations

▪ get(key) with erasures

❖Involve data recoveries

❖Implemented with recv-and-decode 

primitive
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RECOVERY MECHANISM OF BIEC AND TRIEC

25 © OpenFabrics Alliance

Out-of-Band Recovery for BiEC In-Band Recovery for TriEC

• Out-of-Band Recovery
❖Write back

❖Recover in the background

• In-Band Recovery
❖No extra computations or 

communications



OPTIMIZATIONS WITH MLNX OFED
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▪ Avoidance of Sending Unrequested 

Chunks

❖Nullify the work requests to avoid sending out 

unrequested chunks

▪ EC Calculator Cache

❖Initializing EC calculators is very expensive 

with Mellanox’s EC offload APIs

❖Static EC calculator cache vs. dynamic EC 

calculator cache
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EVALUATION
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MICROBENCHMARK – TRIEC ENCODING
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▪ TriEC reduces the encoding time with RS(12,4) by 23.5% - 45.1%
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MICROBENCHMARK – TRIEC ENCODING
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▪ Evaluate TriEC with all widely-used EC configurations



MICROBENCHMARK – TRIEC DECODING
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▪ TriEC reduces the decoding time with RS(12,4) by 18.6% - 64.6%
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MICROBENCHMARK – TRIEC DECODING
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THROUGHPUT OF TRIEC-CACHE
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▪ TriEC speeds up the overall throughput performance by up to 13.3% for 

equal-shares, 14.8% for read-mostly, and 13.9% for read-only workloads.

Throughput Comparisons for RS(6, 3) (OSC Pitzer Cluster)
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CONCLUSION AND FUTURE WORK

34 © OpenFabrics Alliance

▪ A new EC NIC offload paradigm based on tripartite graph model (i.e., TriEC)

▪ A new receive-and-decode primitive on top of Mellanox EC NIC offload APIs

▪ Co-design a TriEC-based key value store based on Memcached

▪ TriEC reduces the average write latency by up to 23.2% and the recovery time by up to 37.8%

even with only 1% failure occurrences

▪ In the future, we plan to apply TriEC to other storage systems and hardware platforms
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