COMPUTE EXPRESS LINK™ (CXL™): A COHERENT INTERFACE FOR ULTRA-HIGH-SPEED TRANSFERS

Jim Pappas, Director, Industry Initiatives, Intel Corporation
Chairman, CXL Consortium
AGENDA

- Industry Landscape
- Compute Express Link™ Overview
- Introducing CXL™ Consortium
- CXL Features and Benefits
- CXL Use Cases
- Summary
Industry trends are driving demand for faster data processing and next-generation data center performance.

- Proliferation of Cloud Computing
- Growth of AI & Analytics
- Cloudification of the Network & Edge
WHY THE NEED FOR A NEW CLASS OF INTERCONNECT?

- Industry mega-trends are driving demand for faster data processing and next-generation data center performance:
 - Proliferation of Cloud Computing
 - Growth of Artificial Intelligence and Analytics
 - Cloudification of the Network and Edge

- Need a new class of interconnect for heterogeneous computing and disaggregation usages:
 - Efficient resource sharing
 - Shared memory pools with efficient access mechanisms
 - Enhanced movement of operands and results between accelerators and target devices
 - Significant latency reduction to enable disaggregated memory

- The industry needs open standards that can comprehensively address next-gen interconnect challenges
COMPUTE EXPRESS LINK™ (CXL™) OVERVIEW

▪ New breakthrough high-speed CPU-to-Device interconnect
 • Enables a high-speed, efficient interconnect between the CPU and platform enhancements and workload accelerators
 • Builds upon PCI Express® infrastructure, leveraging the PCIe® 5.0 physical and electrical interface
 • Maintains memory coherency between the CPU memory space and memory on attached devices
 • Allows resource sharing for higher performance
 • Reduced complexity and lower overall system cost
 • Permits users to focus on target workloads as opposed to redundant memory management

▪ Delivered as an open industry standard
 • CXL Specification 1.1 is available now
 • Future CXL Specification generations will continue to innovate to meet industry needs
▪ Alibaba, Cisco, Dell EMC, Facebook, Google, Hewlett Packard Enterprise, Huawei, Intel Corporation and Microsoft announced their intent to incorporate in March 2019
▪ This core group announced incorporation of the Compute Express Link (CXL) Consortium on September 17, 2019 and unveiled the names of its Board of Directors:
INTRODUCING CXL

- **Processor Interconnect:**
 - Open industry standard
 - High-bandwidth, low-latency
 - Coherent interface
 - Leverages PCI Express®
 - Targets high-performance computational workloads
 - Artificial Intelligence
 - Machine Learning
 - HPC
 - Comms

© OpenFabrics Alliance

Compute Express Link™ and CXL™ are trademarks of the Compute Express Link Consortium.
WHAT IS CXL?

- Alternate protocol that runs across the standard PCIe physical layer

- Uses a flexible processor port that can auto-negotiate to either the standard PCIe transaction protocol or the alternate CXL transaction protocols

- First generation CXL aligns to 32 Gbps PCIe 5.0

- CXL usages expected to be key driver for an aggressive timeline to PCIe 6.0
The CXL transaction layer is compromised of three dynamically multiplexed sub-protocols on a single link:

- **CXL.io**
 Discovery, configuration, register access, interrupts, etc.

- **CXL.cache**
 Device access to processor memory

- **CXL.Memory**
 Processor access to device attached memory

Compute Express Link™ and CXL™ are trademarks of the Compute Express Link Consortium.
CXL FEATURES AND BENEFITS
All 3 representative usages have latency critical elements:

- CXL.cache
- CXL.memory
- CXL.io

CXL cache and memory stack is optimized for latency:

- Separate transaction and link layer from IO
- Fixed message framing

CXL io flows pass through a stack that is largely identical a standard PCIe stack:

- Dynamic framing
- Transaction Layer Packet (TLP)/Data Link Layer Packet (DLLP) encapsulated in CXL flits
All 3 representative usages have latency critical elements:
- CXL.cache
- CXL.memory
- CXL.io

CXL cache and memory stack is optimized for latency:
- Separate transaction and link layer from IO
- Fixed message framing

CXL io flows pass through a stack that is largely identical a standard PCIe stack:
- Dynamic framing
- Transaction Layer Packet (TLP)/Data Link Layer Packet (DLLP) encapsulated in CXL flits
ASYMMETRIC COMPLEXITY

CCI* Model – Symmetric CCI Protocol

Accelerator
 - Accelerator Engine
 - Accelerator Caching Agent
 - Accelerator Home Agent
 - Memory Agent

CPU
 - Core
 - CCI Caching Agent
 - CCI Home Agent
 - Memory Agent

CXL Model – Asymmetric Protocol

Accelerator
 - Accelerator Engine
 - Cache
 - Biased Coherence Bypass
 - Memory Agent

CPU
 - Core
 - CXL/CCI Caching Agent
 - CXL/CCI Home Agent
 - Memory Agent

*Cach Coherent Interface

CXL Key Advantages:
- Avoid protocol interoperability hurdles/roadblocks
- Enable devices across multiple segments (e.g. client / server)
- Enable Memory buffer with no coherency burden
- Simpler, processor independent device development

Compute Express Link™ and CXL™ are trademarks of the Compute Express Link Consortium.
Critical access class for accelerators is “device engine to device memory”

"Coherence Bias" allows a device engine to access its memory coherently without visiting the processor

Two driver managed modes or “Biases”

HOST BIASES: pages being used by the host or shared between host and device
DEVICE BIASES: pages being used exclusively by the device

Both biases guaranteed correct/coherent

Guarantee applies even when software bugs or speculative accesses unexpectedly access device memory in the “Device Bias” state.

Compute Express Link™ and CXL™ are trademarks of the Compute Express Link Consortium.
CXL USE CASES
Representative CXL Usages

Caching Devices / Accelerators

- **Usages:**
 - PGAS NIC
 - NIC atomics
- **Protocols:**
 - CXL.io
 - CXL.cache

Accelerators with Memory

- **Usages:**
 - GPU
 - Dense Computation
- **Protocols:**
 - CXL.io
 - CXL.cache
 - CXL.memory

Memory Buffers

- **Usages:**
 - Memory BW expansion
 - Memory capacity expansion
 - Storage Class Memory
- **Protocols:**
 - CXL.io
 - CXL.mem

1. **Type 1 Device**
2. **Type 2 Device**
3. **Type 3 Device**
HETEROGEOUS COMPUTING REVISITED – WITH CXL

- CXL enables a more fluid and flexible memory model
- Single, common, memory address space across processors and devices

- More efficient population and update of operands
- More efficient extraction of results
- Memory resource “borrowing”
- User/Kernel level data access and data movement
- Low latency to memory, host to device and device to host

CPU-attached Memory (OS Managed)

Accelerator-Attached Memory (Runtime managed cache)

© OpenFabrics Alliance

Compute Express Link™ and CXL™ are trademarks of the Compute Express Link Consortium.
CXL SUMMARY

- CXL has the right features and architecture to enable a broad, open ecosystem for heterogeneous computing and server disaggregation:

 Coherent Interface:
 Leverages PCIe® with 3 mix-and-match protocols

 Low Latency:
 .Cache and .Mem targeted at near CPU cache coherent latency

 Asymmetric Complexity:
 Eases burdens of cache coherent interface designs

 Open Industry Standard:
 With growing broad industry support
THANK YOU

Jim Pappas, Director, Industry Initiatives, Intel Corporation
Chairman, CXL Consortium