
ONEAPI, ONECCL AND OFI: PATH TO HETEROGENEOUS ARCHITECTURE

PROGRAMMING WITH SCALABLE COLLECTIVE COMMUNICATIONS

Sayantan Sur, Principal Engineer

Intel® Corp.

2020 OFA Virtual Workshop

PROGRAMMING CHALLENGES

FOR MULTIPLE ARCHITECTURES

2 © OpenFabrics Alliance

Challenges:

• Growth in specialized workloads

• No common language or APIs

• Inconsistent tool support across

platforms

Introducing oneAPI:

• Unified and simplified language and

libraries for expressing parallelism

• Based on industry standards and open

specifications

• Interoperable with existing HPC

programming models

Industry Intel

Initiative Product

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Scalar Vector Matrix Spatial

XPUs

CPU GPU FPGA Other accel.

DEEP LEARNING WITH COLLECTIVE COMMUNICATIONS

▪ Deep learning is a branch of AI where a neural network (model) is trained using either

labeled on unlabeled data

▪ Training a model is very compute intensive

▪ Distributing the computation either using model replication or distribution is required

to train a model in reasonable amount of time

• Introduces communication in the training process

• Communication is generally collective (several processors participate simultaneously)

• Typical communication routines used are: Allreduce, Reduce-Scatter, Allgather, Reduce, Broadcast, Alltoall

▪ oneAPI Collective Communications Library (oneCCL)

• Optimized implementations of Collective Communications

• Exposes APIs that are friendly for Deep Learning Frameworks

▪ Open specification: https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html

▪ Open source implementation: https://github.com/oneapi-src/oneCCL

3 © OpenFabrics Alliance

https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html
https://github.com/oneapi-src/oneCCL

ONECCL ARCHITECTURE AND FEATURES

© OpenFabrics Alliance4

ONEAPI COLLECTIVE COMMUNICATIONS LIBRARY (ONECCL)

▪ Built on top of lower-level communication middleware. MPI and libfabrics transparently

support many interconnects, such as Intel® Omni-Path Architecture, InfiniBand*, and Ethernet.

▪ Enables efficient implementations of collectives that are heavily used for neural network

training, including all-gather, all-reduce, and reduce-scatter.

5 © OpenFabrics Alliance

ML / DL

Frameworks / Libraries

oneCCL

MPI Level 0OFI

Level Zero provides
low-level direct-to-

metal interfaces that
are tailored to the

devices in a oneAPI
platform

MPI and OpenFabrics
Interface (OFI) provide
portable abstractions
across wide variety of

network fabrics

ONECCL PROGRAMMING MODEL

6 © OpenFabrics Alliance

Key abstractions

▪ Stream

• Encapsulates execution context for communication operation

▪ Communicator

• Defines participants of communication operation

• Rank = device (CPU or GPU)

• Creation can be controlled with attributes

▪ Collective

• Communication operation between communicator’s participant

• Behavior can be controlled with attributes

SPARSE TENSOR ALLREDUCE IN ONECCL

▪ Language models typically feature huge embedding tables within their topology

▪ Simple gradient computation followed by Allreduce not performant

▪ Gradients for such layers are computed for a smaller sub-tensor

▪ A sparse allreduce enables computation on sub-tensors

• “Language Modeling at Scale”, M. Patwary, et. al. Silicon Valley AI Lab, Baidu Research

7 © OpenFabrics Alliance

Define Indices that are Valid

Define Send Buffer
Output receive indices

Output receive buffer

Example of Application
specific Collective APIs

UNORDERED COLLECTIVE SUPPORT

▪ Some frameworks deploy local

scheduling approach for the graph

of operations, which may result in

different ordering of collective

operations across different

processes.

▪ In contrast, oneCCL provides a

mechanism to arrange execution

of collective operations in

accordance with the user-defined

identifier

▪ Increase productivity by directly

mapping framework requirements

to collective library

8 © OpenFabrics Alliance

PRIORITIZATION OF COLLECTIVES

Individual collective operations can set the priority with which they are executed

▪ This allows to postpone execution of non-urgent operations to complete urgent

operations earlier

▪ Optimizes use cases such as overlapping, mixed model/data parallelism etc.

▪ The priority is a non-negative number; priority increases with value

▪ coll_attr.priority lets the caller set priority, or environment variable CCL_PRIORITY

Values

▪ None - default mode when all collective operations have the same priority.

▪ Direct - you explicitly specify priority using coll_attr.priority.

▪ LIFO (Last In, First Out) - priority is implicitly increased on each collective call. In this case,

you do not have to specify priority.

9 © OpenFabrics Alliance

CACHING COLLECTIVE INFORMATION

▪ Collective initialization can be costly

• Allocation of internal structures and buffers

• Registration of memory

• Rendezvous Handshake with peers

▪ oneCCL enables amortization of these overheads by caching collective internal

representations and reusing them on the subsequent calls

▪ Set coll_attr.to_cache = 1 and coll_attr.match_id = <match_id>, where<match_id> is a

unique string

• <match_id> should be the same for a specific collective operation across all ranks

• If the same tensor is a part of different collective operations, match_id should have different values for

each of these operations

10 © OpenFabrics Alliance

ONECCL PERFORMANCE WITH DEEP LEARNING

RECOMMENDER SYSTEMS

© OpenFabrics Alliance11

Optimizing Deep Learning Recommender Systems’ Training on CPU Cluster Architectures
D. Kalamkar, E. Georganas, S. Srinivasan, J. Chen, M. Shiryaev, and A. Heinecke

https://arxiv.org/abs/2005.04680

DEEP LEARNING RECOMMENDATION MODEL (DLRM)

12 © OpenFabrics Alliance

• DLRM comprises of MLPs (multi-layer perceptron) and Embedding table

look-ups and the corresponding interaction operations

• Stresses all important aspects of the underlying hardware platform at the

same time: compute capabilities, network bandwidth, memory capacity and

memory bandwidth

• DLRMs mark the beginning of a new era of deep learning workloads

COMMUNICATION ASPECTS

▪ Allreduce

• Reducing the weight gradients in the backward pass of

the MLPs we need ensure overlap with the GEMM

compute

• To reduce overhead of the communication in the SGD:

• Overlapped the SGD solver with the back-

propagation MLP kernels

• Devote ‘S’ threads for communication of gradient

weights, and remaining threads in compute

▪ Alltoall

• For switching between data and model parallelism

during the interaction operation

• DL frameworks such as PyTorch used to lack primitives

for supporting this communication pattern

• We recently added experimental support for alltoall

primitive to their distributed backend

13 © OpenFabrics Alliance

https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/

https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/

EXPERIMENTAL SETUP

▪ Platform

• Intel® Xeon Cascade Lake 8280 system featuring 8 sockets

• The Platinum series processor offers 3 point-to-point Ultra Path Interconnect (UPI) links

• 28 cores at an AVX512 turbo frequency of 2.4 GHz and 1.8GHz AVX512 base frequency

• Memory:6 dual-rank 16 GB DDR4-2666 DIMMs per socket offering 105 GB/s memory bandwidth

▪ Interconnect

• OPA-100 NICs

• Topology: Pruned fat-tree with 16 nodes with 32 sockets connected to one switch and then both leaf switches

connected with 16 links to the root switch

14 © OpenFabrics Alliance

Node Topology Fabric Topology

COMMUNICATION OVERLAP RESULTS

15 © OpenFabrics Alliance

DLRM “Large” Strong Scaling (4-64 ranks) with and without overlapping

• Compute kernels slowed down due
to communication overlap

• PyTorch MPI backend thread was
interfering with compute threads

• CCL provides a mechanism to bind
the communication threads to
specific cores

• Communication threads isolated
from compute threads on separate
cores

• Reduces interference and enables
much better overlap of compute
and communication

Intel® Xeon Cascade Lake 8280 system featuring 8 sockets
The Platinum series processor offers 3 point-to-point Ultra Path Interconnect (UPI) links
28 cores at an AVX512 turbo frequency of 2.4 GHz and 1.8GHz AVX512 base frequency
Memory:6 dual-rank 16 GB DDR4-2666 DIMMs per socket offering 105 GB/s memory bandwidth

Intel® OPA-100 NICs
Topology: Pruned fat-tree with 16 nodes with 32 sockets connected to one switch and then both leaf switches connected with 16 links to the root switch

CONCLUSIONS

▪ oneCCL provides an interface that matches DL training workload

requirements

▪ Easy to integrate into several frameworks

▪ Provides a unified interface that can layer over many underlying

interfaces

▪ Leverages OFI/Libfabric to map to underlying hardware

▪ Level0 interface provides portability over range of accelerators

▪ Recent research shows very good performance

▪ Open-source reference implementation available

• https://github.com/oneapi-src/oneCCL

16 © OpenFabrics Alliance

https://github.com/oneapi-src/oneCCL

LEGAL DISCLAIMER & OPTIMIZATION NOTICE

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

17

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product

when combined with other products. For more complete information visit www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2020, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are

trademarks of Intel Corporation in the U.S. and other countries.

Intel Top Secret

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

THANK YOU

2020 OFA Virtual Workshop

