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PROGRAMMING CHALLENGES 

FOR MULTIPLE ARCHITECTURES
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Challenges:

• Growth in specialized workloads

• No common language or APIs

• Inconsistent tool support across 

platforms

Introducing oneAPI:

• Unified and simplified language and 

libraries for expressing parallelism

• Based on industry standards and open 

specifications

• Interoperable with existing HPC 

programming models

Industry Intel

Initiative Product 

Middleware /  Frameworks

Application Workloads Need Diverse Hardware

Scalar Vector Matrix Spatial

XPUs

CPU GPU FPGA Other accel.



DEEP LEARNING WITH COLLECTIVE COMMUNICATIONS

▪ Deep learning is a branch of AI where a neural network (model) is trained using either 

labeled on unlabeled data

▪ Training a model is very compute intensive

▪ Distributing the computation either using model replication or distribution is required 

to train a model in reasonable amount of time

• Introduces communication in the training process

• Communication is generally collective (several processors participate simultaneously)

• Typical communication routines used are: Allreduce, Reduce-Scatter, Allgather, Reduce, Broadcast, Alltoall

▪ oneAPI Collective Communications Library (oneCCL)

• Optimized implementations of Collective Communications

• Exposes APIs that are friendly for Deep Learning Frameworks

▪ Open specification: https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html

▪ Open source implementation: https://github.com/oneapi-src/oneCCL
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https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html
https://github.com/oneapi-src/oneCCL


ONECCL ARCHITECTURE AND FEATURES
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ONEAPI COLLECTIVE COMMUNICATIONS LIBRARY (ONECCL)

▪ Built on top of lower-level communication middleware. MPI and libfabrics transparently 

support many interconnects, such as Intel® Omni-Path Architecture, InfiniBand*, and Ethernet.

▪ Enables efficient implementations of collectives that are heavily used for neural network 

training, including all-gather, all-reduce, and reduce-scatter.
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ML / DL

Frameworks / Libraries

oneCCL

MPI Level 0OFI

Level Zero provides 
low-level direct-to-

metal interfaces that 
are tailored to the 

devices in a oneAPI
platform

MPI and OpenFabrics
Interface (OFI) provide 
portable abstractions 
across wide variety of 

network fabrics



ONECCL PROGRAMMING MODEL
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Key abstractions

▪ Stream

• Encapsulates execution context for communication operation

▪ Communicator

• Defines participants of communication operation

• Rank = device (CPU or GPU)

• Creation can be controlled with attributes

▪ Collective

• Communication operation between communicator’s participant

• Behavior can be controlled with attributes



SPARSE TENSOR ALLREDUCE IN ONECCL

▪ Language models typically feature huge embedding tables within their topology

▪ Simple gradient computation followed by Allreduce not performant

▪ Gradients for such layers are computed for a smaller sub-tensor 

▪ A sparse allreduce enables computation on sub-tensors

• “Language Modeling at Scale”, M. Patwary, et. al. Silicon Valley AI Lab, Baidu Research 
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Define Indices that are Valid

Define Send Buffer
Output receive indices

Output receive buffer

Example of Application 
specific Collective APIs



UNORDERED COLLECTIVE SUPPORT

▪ Some frameworks deploy local 

scheduling approach for the graph 

of operations, which may result in 

different ordering of collective 

operations across different 

processes.

▪ In contrast, oneCCL provides a 

mechanism to arrange execution 

of collective operations in 

accordance with the user-defined 

identifier

▪ Increase productivity by directly 

mapping framework requirements 

to collective library
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PRIORITIZATION OF COLLECTIVES

Individual collective operations can set the priority with which they are executed

▪ This allows to postpone execution of non-urgent operations to complete urgent 

operations earlier

▪ Optimizes use cases such as overlapping, mixed model/data parallelism etc.

▪ The priority is a non-negative number; priority increases with value

▪ coll_attr.priority lets the caller set priority, or environment variable CCL_PRIORITY

Values

▪ None - default mode when all collective operations have the same priority.

▪ Direct - you explicitly specify priority using coll_attr.priority.

▪ LIFO (Last In, First Out) - priority is implicitly increased on each collective call. In this case, 

you do not have to specify priority.
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CACHING COLLECTIVE INFORMATION

▪ Collective initialization can be costly

• Allocation of internal structures and buffers

• Registration of memory 

• Rendezvous Handshake with peers

▪ oneCCL enables amortization of these overheads by caching collective internal 

representations and reusing them on the subsequent calls

▪ Set coll_attr.to_cache = 1 and coll_attr.match_id = <match_id>, where<match_id> is a 

unique string

• <match_id> should be the same for a specific collective operation across all ranks

• If the same tensor is a part of different collective operations, match_id should have different values for 

each of these operations
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ONECCL PERFORMANCE WITH DEEP LEARNING 

RECOMMENDER SYSTEMS
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Optimizing Deep Learning Recommender Systems’ Training on CPU Cluster Architectures
D. Kalamkar, E. Georganas, S. Srinivasan, J. Chen, M. Shiryaev, and A. Heinecke

https://arxiv.org/abs/2005.04680



DEEP LEARNING RECOMMENDATION MODEL (DLRM)
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• DLRM comprises of MLPs (multi-layer perceptron) and Embedding table 

look-ups and the corresponding interaction operations

• Stresses all important aspects of the underlying hardware platform at the 

same time: compute capabilities, network bandwidth, memory capacity and 

memory bandwidth

• DLRMs mark the beginning of a new era of deep learning workloads 



COMMUNICATION ASPECTS

▪ Allreduce

• Reducing the weight gradients in the backward pass of 

the MLPs we need ensure overlap with the GEMM 

compute

• To reduce overhead of the communication in the SGD:

• Overlapped the SGD solver with the back-

propagation MLP kernels

• Devote ‘S’ threads for communication of gradient 

weights, and remaining threads in compute

▪ Alltoall

• For switching between data and model parallelism 

during the interaction operation 

• DL frameworks such as PyTorch used to lack primitives 

for supporting this communication pattern

• We recently added experimental support for alltoall

primitive to their distributed backend
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https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/

https://ai.facebook.com/blog/dlrm-an-advanced-open-source-deep-learning-recommendation-model/


EXPERIMENTAL SETUP

▪ Platform

• Intel® Xeon Cascade Lake 8280 system featuring 8 sockets 

• The Platinum series processor offers 3 point-to-point Ultra Path Interconnect (UPI) links 

• 28 cores at an AVX512 turbo frequency of 2.4 GHz and 1.8GHz AVX512 base frequency

• Memory:6 dual-rank 16 GB DDR4-2666 DIMMs per socket offering 105 GB/s memory bandwidth

▪ Interconnect

• OPA-100 NICs

• Topology: Pruned fat-tree with 16 nodes with 32 sockets connected to one switch and then both leaf switches 

connected with 16 links to the root switch 
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Node Topology Fabric Topology



COMMUNICATION OVERLAP RESULTS
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DLRM “Large” Strong Scaling (4-64 ranks) with and without overlapping

• Compute kernels slowed down due 
to communication overlap

• PyTorch MPI backend thread was 
interfering with compute threads

• CCL provides a mechanism to bind 
the communication threads to 
specific cores 

• Communication threads isolated 
from compute threads on separate 
cores

• Reduces interference and enables 
much better overlap of compute 
and communication 

Intel® Xeon Cascade Lake 8280 system featuring 8 sockets 
The Platinum series processor offers 3 point-to-point Ultra Path Interconnect (UPI) links 
28 cores at an AVX512 turbo frequency of 2.4 GHz and 1.8GHz AVX512 base frequency
Memory:6 dual-rank 16 GB DDR4-2666 DIMMs per socket offering 105 GB/s memory bandwidth

Intel® OPA-100 NICs
Topology: Pruned fat-tree with 16 nodes with 32 sockets connected to one switch and then both leaf switches connected with 16 links to the root switch 



CONCLUSIONS

▪ oneCCL provides an interface that matches DL training workload 

requirements

▪ Easy to integrate into several frameworks

▪ Provides a unified interface that can layer over many underlying 

interfaces

▪ Leverages OFI/Libfabric to map to underlying hardware

▪ Level0 interface provides portability over range of accelerators

▪ Recent research shows very good performance

▪ Open-source reference implementation available

• https://github.com/oneapi-src/oneCCL
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https://github.com/oneapi-src/oneCCL


LEGAL DISCLAIMER & OPTIMIZATION NOTICE

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. 
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or 
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use 
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable 
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
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▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, 

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product 

when combined with other products.  For more complete information visit www.intel.com/benchmarks.  

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, 

TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER 

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR 

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, 

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2020, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are 

trademarks of Intel Corporation in the U.S. and other countries.

Intel Top Secret

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks
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