
STATUS OF OPENFABRICS INTERFACES (OFI) SUPPORT IN MPICH

Yanfei Guo, Assistant Computer Scientist

Argonne National Laboratory

2020 OFA Virtual Workshop



AGENDA

▪ What is MPICH?

▪ Why OFI?

▪ Current support

• MPICH 3.3 series (CH4)

• MPICH 3.4 series (CH4)

▪ Ongoing work

• New Collective Framework

• GPU Support

2 © OpenFabrics Alliance



WHAT IS MPICH?

▪ MPICH is a high-performance and widely portable open-source implementation of MPI

▪ It provides all features of MPI that have been defined so far (up to and include MPI-3.1)

▪ Active development lead by Argonne National Laboratory and University of Illinois at 

Urbana-Champaign

• Several close collaborators who contribute features, bug fixes, testing for quality assurance, etc.

• IBM, Microsoft, Cray, Intel, Ohio State University, Queen’s University, Mellanox, RIKEN AICS and others

▪ Current stable release is MPICH-3.3.2

▪ Latest release is MPICH-3.4a2

▪ www.mpich.org

3 © OpenFabrics Alliance

http://www.mpich.org/


MPICH: GOAL AND PHILOSOPHY

▪ MPICH aims to be the preferred MPI implementation on the top machines in the world

▪ Our philosophy is to create an “MPICH Ecosystem”

4 © OpenFabrics Alliance

MPICH

Intel 
MPIIBM 

MPI

Cray
MPI

Microsoft 
MPI

MVAPICH

Tianhe
MPI

MPE

PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

Mellanox
MPICH-MXM

Lenovo
MPI

GA-MPI

CAF-MPI

OpenShmem
-MPI



MOTIVATION

▪ Why OFI/OFIWG?

• Support for diverse hardware through a common API

• Actively, openly developed

• Bi-weekly calls

• Hosted on Github

• Close abstraction for MPI

• MPI community engaged from the start

• Fully functional sockets provider

• Prototype code on a laptop

• Strong Vendor Support

5 © OpenFabrics Alliance



MPICH-3.3 SERIES

▪ Introducing the CH4 device

• Replacement for CH3, but we will maintain CH3 till all of our partners have moved to CH4

• Co-design effort 

• Weekly telecons with partners to discuss design and development issues

• Two primary objectives:

• Low-instruction count communication

• Ability to support high-level network APIs (OFI, UCX)

• E.g., tag-matching in hardware, direct PUT/GET communication

• Support for very high thread concurrency

• Improvements to message rates in highly threaded environments (MPI_THREAD_MULTIPLE)

• Support for multiple network endpoints (THREAD_MULTIPLE or not)

6 © OpenFabrics Alliance



MPICH WITH CH4 DEVICE OVERVIEW

7 © OpenFabrics Alliance

CH4

MPI Layer

CH4 Core

Netmods

OFI UCX

Shmmods

POSIX XPMEM

Architecture-
specific Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-
independent 
Collectives

Derived Datatype 
Management

Group Management

GPU Support Fallback



MPICH PERFORMANCE AND SCALABILITY

8 © OpenFabrics Alliance

BGQ LAMMPS Strong Scaling MPICH/CH4 vs 
MPICH/Original

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

200

400

600

800

1000

1200

1400

512
(368)

1024
(184)

2048
(90)

4096
(45)

8192
(23)

Pe
rc

en
ta

ge
 S

p
ee

d
u

p

Ti
m

es
te

p
s 

p
er

 S
ec

o
n

d

Number of nodes (atoms per core)

MPICH/CH4 Efficiency

▪ Lightweight communication

• Reducing overhead in instruction count and memory 

usage

• Inline Libfabric with MPICH further reduces overhead

▪ Improvements in MPI one-sided 

communication

• Enabling HW accelerated RMA

▪ Communication hints

• Allowing user to tell MPI to optimize for the crucial subset 

of features



MULTIPLE VIRTUAL NETWORK INTERFACE (VNI)

▪ Virtual Network Interface (VNI)

• Each VNI abstracts a set of network resources

• Some networks support multiple VNIs: InfiniBand contexts, scalable endpoints over Intel 

Omni-Path

• Traditional MPI implementation uses single VNI

• Serializes all traffic

• Does not fully exploit network hardware resources

▪ Utilizing multiple VNIs to maximize independence in communication

9

– Separate VNIs per communicator or per RMA window

– Distribute traffic between VNIs with respect to ranks, tags, 

and generally out-of-order communication

– M-N mapping between Work-Queues and VNIs
MPI

Comm[0]

T0

Comm[1]

T1

Comm[2]

T2

Comm[3]

T3

Hardware

VNI VNI VNI 

© OpenFabrics Alliance



MPI+THREAD HYBRID PROGRAMMING PERFORMANCE

10 © OpenFabrics Alliance

Hardware

Application

MPI

CTX 

User Endpoint

Hardware

Application

MPI

CTX 

User 
Endpoint

CTX 

User Expose Parallelism
with COMM/TAG

Multithreaded Transfer Model Current MPI (3.1)

Work-Queue Data Transfer Model with MPI 
Endpoints

-5
0
5

10
15
20
25
30
35
40
45
50
55

M
es

sa
ge

s/
s 

(x
 1

0
6

)

Message size (B)

MPI_THREAD_SINGLE

MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_MULTIPLE with separate COMMs



UPCOMING MPICH-3.4 AND FUTURE PLANS

▪ New Collective Framework
• Optimizing collective based on communication characteristic and availability of HW acceleration

• JSON configuration generated by external profiler

▪ GPU Support
• Communication using GPU-resident buffers

• Non-contiguous datatypes

11 © OpenFabrics Alliance



▪ Thanks to Intel for the significant work on this infrastructure

▪ Two major improvements:

• C++ Template-like structure (still written in C)

• Allows collective algorithms to be written in template form

• Provides “generic” top-level instantiation using point-to-point operations

• Allows device-level machine specific optimized implementations (e.g., using triggered operations for 

OFI or HCOLL for UCX)

• Several new algorithms for a number of blocking and nonblocking collectives (performance 

tuning still ongoing)

12 © OpenFabrics Alliance

Contributed by Intel (with some minor help from Argonne)



SELECTING COLLECTIVE ALGORITHM

▪ Choose Optimal Collective Algorithms
• Optimized algorithm for certain communicator size, message size

• Optimized algorithm using HW collective support

• Making decision on each collective call

▪ Generated Decision Tree
• JSON file describing choosing algorithms with conditions

• JSON file created by profiling tools

• JSON parsed at MPI_Init time and applied to the library

13 © OpenFabrics Alliance

Contributed by Intel (with some minor help from Argonne)



GPU SUPPORT PLAN

▪ Internode
• Native GPU support through Librabric and UCX

• Developing fallback path for no native GPU support

▪ Intranode
• GPU support in SHM

▪ Intranode
• Supporting non-contiguous datatype for GPU

• Packing/Unpacking using host/device buffer

14 © OpenFabrics Alliance

Partnership with Intel, Cray, Mellanox, NVIDIA and AMD



CURRENT STATE OF GPU SUPPORT

▪ Native Internode

• With Libfabric, UCX and supported GPUs

▪ Yaksa Datatype Engine (https://github.com/pmodels/yaksa)

• Support H2D, D2H, D2D

• Packing to appropriate GPU or CPU stage buffer for either native or fallback route

• 1.0 release with CUDA backend

• Intel is contributing on the Intel Xe backend

15 © OpenFabrics Alliance

0

2

4

6

Ti
m

e 
(m

se
c)

Number of integers in the Z dimension

Yaksa H2H Yaksa D2D

Packing the Y-Z plane of a 3D matrix (2x2x<dims>)
Yaksa Datatype Engine

Vector

Indexed

Struct

…

Datatype
Frontend

CPU
Backend

CUDA
Backend

HIP
Backend

ZE
Backend

CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

https://github.com/pmodels/yaksa


MPICH-3.4 ROADMAP

▪ CH4 already in at http://github.com/pmodels/mpich

▪ MPICH-3.4 GA coming out this summer

• Multi-VNI support

• Collective Selection Framework

16 © OpenFabrics Alliance

http://github.com/pmodels/mpich


THANK YOU
Yanfei Guo, Assistant Computer Scientist

Argonne National Laboratory

2020 OFA Virtual Workshop


