
INEC: IN-NETWORK ERASURE CODING
Xiaoyi Lu

University of California, Merced

xiaoyi.lu@ucmerced.edu
http://faculty.ucmerced.edu/luxi

2021 OFA Virtual Workshop



CHALLENGES OF DATA EXPLOSION
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RETHINKING OF DISTRIBUTED STORAGE SYSTEMS
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 No Fault Tolerance
High performance
Not reliable

 N-way Replication
• Tolerate up to 𝑛𝑛 − 1 node failures
• Performance degradation
• Large storage overhead Pe
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EC BASICS - REED-SOLOMON CODE
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REED-SOLOMON (RS) CODE
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 𝑅𝑅𝑅𝑅(𝑘𝑘,𝑚𝑚)
• Widely used (RAID, Microsoft Azure, HDFS 

3.x)

• Encodes on 𝑘𝑘 data chunks to generate 𝑚𝑚
parity chunks

• Decodes on any 𝑘𝑘 data/parity chunks to 
recover the original data

 Storage Overhead of Common Codes
• RS(4,2) => 1.5x overhead

• RS(6,3) => 1.5x overhead

Reed-Solomon EC for k=4 and m=2 
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REED-SOLOMON (RS) CODE
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Reed-Solomon EC for k=4 and m=2 
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 𝑅𝑅𝑅𝑅(𝑘𝑘,𝑚𝑚)
• Widely used (RAID, Microsoft Azure, HDFS 

3.x)

• Encodes on 𝑘𝑘 data chunks to generate 𝑚𝑚
parity chunks

• Decodes on any 𝑘𝑘 data/parity chunks to 
recover the original data

 Storage Overhead of Common Codes
• RS(4,2) => 1.5x overhead vs. 3x in 3-way 

replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way 
replication



REED-SOLOMON (RS) CODE
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Reed-Solomon EC for k=4 and m=2 
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 𝑅𝑅𝑅𝑅(𝑘𝑘,𝑚𝑚)
• Widely used (RAID, Microsoft Azure, HDFS 

3.x)

• Encodes on 𝑘𝑘 data chunks to generate 𝑚𝑚
parity chunks

• Decodes on any 𝑘𝑘 data/parity chunks to 
recover the original data

 Storage Overhead of Common Codes
• RS(4,2) => 1.5x overhead vs. 3x in 3-way 

replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way 
replication



EC: THE ALTERNATIVE RESILIENCE TECHNIQUE
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 Exploiting EC will introduce both computation overhead and
communication overhead

Client

Write(Encoding) Read with Erasures (Decoding)

Client

Computation Computation

Communication Communication

Are there any good approaches to improve EC performance?



BRIEF HISTORY OF ERASURE CODING (EC)
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STATE-OF-THE-ART EC SCHEMES
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OPPORTUNITIES AND CHALLENGES
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WHAT CAN WE LEARN?
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 EC calculations are tightly coupled with data transmission in these 
state-of-the-art EC schemes

 SmartNICs with EC capability are promising for designing next-
generation distributed storage systems

RDMA NICs

SummitFugaku



OVERVIEW EC CAPABILITIES ON MODERN SMARTNICS
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Incoherent and Coherent EC Calculation and Networking

 Coherent EC Calculation 
and Networking
Less CPU involvement
Less DMA operations



CHALLENGES

 What should be the Coherent In-Network EC primitives to effectively support existing 
state-of-the-art EC schemes? 

 How can we make EC calculations and networking functionality coherent for all the 
proposed Coherent In-Network EC primitives?

 How can we analyze and verify the effectiveness and efficiency of the proposed EC 
primitive and protocol designs?
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INEC: COHERENT IN-NETWORK EC PRIMITIVES
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INEC APIS
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INEC APIs

• Three types of essential coherent in-network EC primitives 
• Flexible APIs

o calculator
o memory layout

o communication channels
o #receives to wait for



PRIMITIVE DESIGN - EC-SEND 
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ec-send 
 Fetches data chunks from host memory 

via DMA
 Puts data chunks into on-NIC buffer
 Performs EC/XOR on data chunks
 Sends out the computation result

CPU Mem RNIC

ec-send

EC

CPU 
Involvement

DMA 
Operations



PRIMITIVE DESIGN - RECV-EC-SEND  
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recv-ec-send
 Waits for remote chunks to arrive
 Fetches data chunks from host memory 

via DMA
 Puts data chunks into on-NIC buffer
 Performs EC/XOR on local chunks and 

received chunks
 Sends out the computation result

CPU Mem RNIC

recv-ec-send

EC
CPU 

Involvement
DMA 

Operations



PRIMITIVE DESIGN - RECV-EC
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recv-ec
 Waits for remote data to arrive
 Fetches data chunks from host memory 

via DMA
 Puts data chunks into on-NIC buffer
 Performs EC/XOR on its local data and the 

received data
 Puts result into host memory

CPU Mem RNIC

recv-ec

EC

CPU 
Involvement



DYNAMIC EC GRAPH (DEG) 
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 A dynamic acyclic graph for representing EC 
schemes’ node layouts and automatically 
applying INEC primitives
 Rules:
overtices with zero indegree choose ec-send (or send if there is 

no computation)
overtices with zero outdegree leverage recv-ec (or recv if there 

is no computation)
oother vertices utilize recv-ec-send
oexplicitly specifying computation type for each vertex

ec-send

recv-ec-send

recv-ec



MORE DETAILS

 Primitive Analysis and Performance Model
 Implemented within Mellanox OFED driver 

4.7-3.2.9.0
 Co-Design: INEC-Cache

• Based on memcached (v1.5.12)
• Interleaved Architecture
o Interleave Mem Stripes into the cluster to balance 

workload and resource utilizations

 H. Shi, and X. Lu, INEC: Fast and Coherent 
In-Network Erasure Coding, The 32nd 
International Conference for High 
Performance Computing, Networking, 
Storage and Analysis (SC’20)
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EVALUATION
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MICROBENCHMARK – ENCODING LATENCY
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RS Code

INEC improves RS by up to 2.28x

LRC Code

INEC improves LRC by up to 1.58x

TriEC Code

INEC improves TriEC by up to 3.36x



MICROBENCHMARK – ENCODING BANDWIDTH
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• bandwidth = (size of generated 
data)/(elapsed time)

• INEC speeds up the bandwidth 
of RS by up to 2.71x, LRC by up 
to 2.63x, and TriEC by up to 
5.87x

• TriEC with INEC primitives 
achieves the best bandwidth 
performance 



MICROBENCHMARK – DECODING LATENCY
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RS Code

INEC reduces latencies of RS by up to 54.01%

ECPipe Code

ECPipe is accelerated by up to 72.25%



MICROBENCHMARK – DECODING LATENCY
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LRC Code PPR Code

• For small chunk sizes, INEC in LRC incurs performance degradation
• INEC reduces latencies of LRC, PPR, and TriEC by up to 57.6%, 51.2%, and 64.3%, respectively

TriEC Code



MICROBENCHMARK – DECODING BANDWIDTH
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• bandwidth = (size of generated 
data)/(elapsed time) 

• INEC outperforms the baseline 
in terms of bandwidth by up to 
1.86x, 2.04x, 2.03x, 2.04x, and 
2.94x for RS, LRC, PPR, ECPipe, 
and TriEC, respectively



IMPACT ON PERCENTILE LATENCIES OF INEC-CACHE
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(a) PPR(12,4) Repairing DEG (b) ec-send of Node A (c) recv-ec-send of Node B (d) recv-xor of Node C

• The latency distributions demonstrate that using INEC can alleviate the performance 
fluctuation introduced by frequent context switches

• INEC reduces 50th, 95th, and 99th percentile latencies by up to 77.16%, 66.79%, and 
62.40%, respectively



THROUGHPUT IMPROVEMENT OF INEC-CACHE
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• Improves RS, LRC, PPR, ECPipe, 
and TriEC by up to 14.36%, 
16.99%, 68.33%, 99.57%, and 
92.26%, respectively

• An average performance boost 
of up to 57% with read-
dominated workloads and an 
average speedup of 28% with 
write-heavy workloads



CONCLUSION
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H. Shi, and X. Lu, INEC: Fast and Coherent In-Network Erasure Coding, The 32nd International Conference for High Performance Computing, 
Networking, Storage and Analysis (SC’20)
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• Can be used to co-design different distributed storage systems and EC schemes

Proposed designs in INEC are abstract and generic

• Deliver performance benefits to upper-layer applications
• Make EC more viable for designing distributed storage systems

Improved efficiency, parallelism, and overlapping

• Could be integrated into next-generation SmartNICs’ drivers

Fast and coherent in-network EC primitives (INEC) and TriEC paradigm

CONCLUSION AND IMPACT
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