
INEC: IN-NETWORK ERASURE CODING
Xiaoyi Lu

University of California, Merced

xiaoyi.lu@ucmerced.edu
http://faculty.ucmerced.edu/luxi

2021 OFA Virtual Workshop

CHALLENGES OF DATA EXPLOSION

2 © OpenFabrics Alliance

0
20
40
60
80
100
120
140
160
180
200

0.00

0.20

0.40

0.60

0.80

1.00

Year

Disk Drive Cost and Annual Data Size with Time

Hard Disk Drives

Solid State Drives

Annual Data Size

Pr
ic

e
($

/G
B)

D
at

a
Si

ze
 (Z

B)

Disk Drive Prices (1955-2019), https://jcmit.net/diskprice.htm
Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

https://jcmit.net/diskprice.htm

RETHINKING OF DISTRIBUTED STORAGE SYSTEMS

3 © OpenFabrics Alliance

 No Fault Tolerance
High performance
Not reliable

 N-way Replication
• Tolerate up to 𝑛𝑛 − 1 node failures
• Performance degradation
• Large storage overhead Pe

rf
or

m
an

ce

Storage Overhead

No FT

Replication

1 𝑛𝑛

Erasure Coding (EC)

EC BASICS - REED-SOLOMON CODE

4 © OpenFabrics Alliance

REED-SOLOMON (RS) CODE

5 © OpenFabrics Alliance

 𝑅𝑅𝑅𝑅(𝑘𝑘,𝑚𝑚)
• Widely used (RAID, Microsoft Azure, HDFS

3.x)

• Encodes on 𝑘𝑘 data chunks to generate 𝑚𝑚
parity chunks

• Decodes on any 𝑘𝑘 data/parity chunks to
recover the original data

 Storage Overhead of Common Codes
• RS(4,2) => 1.5x overhead

• RS(6,3) => 1.5x overhead

Reed-Solomon EC for k=4 and m=2

01 00 00 00
00 01 00 00
00 00 01 00
00 00 00 01
1B 1C 12 14
1C 1B 14 12

A B C D
E F G H
I J K L
M N O P

A B C D
E F G H
I J K L
M N O P
51 52 53 49
55 56 57 25Original Data

Generator
Matrix

Encoded Data

× =
Data Chunks

Parity Chunks

REED-SOLOMON (RS) CODE

6 © OpenFabrics Alliance

Reed-Solomon EC for k=4 and m=2

01 00 00 00
00 01 00 00
00 00 01 00
00 00 00 01
1B 1C 12 14
1C 1B 14 12

A B C D
E F G H
I J K L
M N O P

A B C D
E F G H
I J K L
M N O P
51 52 53 49
55 56 57 25Original Data

Generator
Matrix

Encoded Data

× =

 𝑅𝑅𝑅𝑅(𝑘𝑘,𝑚𝑚)
• Widely used (RAID, Microsoft Azure, HDFS

3.x)

• Encodes on 𝑘𝑘 data chunks to generate 𝑚𝑚
parity chunks

• Decodes on any 𝑘𝑘 data/parity chunks to
recover the original data

 Storage Overhead of Common Codes
• RS(4,2) => 1.5x overhead vs. 3x in 3-way

replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way
replication

REED-SOLOMON (RS) CODE

7 © OpenFabrics Alliance

Reed-Solomon EC for k=4 and m=2

A B C D
E F G H
I J K L
M N O P

A B C D
E F G H
51 52 53 49
55 56 57 25

Original Data Survived Data

=
01 00 00 00
00 01 00 00
8D F6 7B 01
F6 8D 01 7B

×

Inverse Matrix

 𝑅𝑅𝑅𝑅(𝑘𝑘,𝑚𝑚)
• Widely used (RAID, Microsoft Azure, HDFS

3.x)

• Encodes on 𝑘𝑘 data chunks to generate 𝑚𝑚
parity chunks

• Decodes on any 𝑘𝑘 data/parity chunks to
recover the original data

 Storage Overhead of Common Codes
• RS(4,2) => 1.5x overhead vs. 3x in 3-way

replication

• RS(6,3) => 1.5x overhead vs. 4x in 4-way
replication

EC: THE ALTERNATIVE RESILIENCE TECHNIQUE

8 © OpenFabrics Alliance

 Exploiting EC will introduce both computation overhead and
communication overhead

Client

Write(Encoding) Read with Erasures (Decoding)

Client

Computation Computation

Communication Communication

Are there any good approaches to improve EC performance?

BRIEF HISTORY OF ERASURE CODING (EC)

9 © OpenFabrics Alliance

Partial Parallel
Repair (PPR)

Hamming
Code

1960s

2012

1980s

2016

1950s

Reed-Solomon
Code

Local
Reconstruction
Codes (LRC)

Repair
Pipelining
(ECPipe)

BCH Code
LDPC Code

20172000s

RAID

Big Data

2019 2020

Our Studies!

INEC

TriEC
UMR-EC

STATE-OF-THE-ART EC SCHEMES

10 © OpenFabrics Alliance

RS

encode decode

TriEC

encode decode

LRC

local parity

encode decode

group

group

global
parities

group
PPR ECPipe

OPPORTUNITIES AND CHALLENGES

11 © OpenFabrics Alliance

WHAT CAN WE LEARN?

12 © OpenFabrics Alliance

 EC calculations are tightly coupled with data transmission in these
state-of-the-art EC schemes

 SmartNICs with EC capability are promising for designing next-
generation distributed storage systems

RDMA NICs

SummitFugaku

OVERVIEW EC CAPABILITIES ON MODERN SMARTNICS

13 © OpenFabrics Alliance

Incoherent and Coherent EC Calculation and Networking

 Coherent EC Calculation
and Networking
Less CPU involvement
Less DMA operations

CHALLENGES

 What should be the Coherent In-Network EC primitives to effectively support existing
state-of-the-art EC schemes?

 How can we make EC calculations and networking functionality coherent for all the
proposed Coherent In-Network EC primitives?

 How can we analyze and verify the effectiveness and efficiency of the proposed EC
primitive and protocol designs?

14 © OpenFabrics Alliance

INEC: COHERENT IN-NETWORK EC PRIMITIVES

15 © OpenFabrics Alliance

INEC APIS

16 © OpenFabrics Alliance

INEC APIs

• Three types of essential coherent in-network EC primitives
• Flexible APIs

o calculator
o memory layout

o communication channels
o #receives to wait for

PRIMITIVE DESIGN - EC-SEND

17 © OpenFabrics Alliance

ec-send
 Fetches data chunks from host memory

via DMA
 Puts data chunks into on-NIC buffer
 Performs EC/XOR on data chunks
 Sends out the computation result

CPU Mem RNIC

ec-send

EC

CPU
Involvement

DMA
Operations

PRIMITIVE DESIGN - RECV-EC-SEND

18 © OpenFabrics Alliance

recv-ec-send
 Waits for remote chunks to arrive
 Fetches data chunks from host memory

via DMA
 Puts data chunks into on-NIC buffer
 Performs EC/XOR on local chunks and

received chunks
 Sends out the computation result

CPU Mem RNIC

recv-ec-send

EC
CPU

Involvement
DMA

Operations

PRIMITIVE DESIGN - RECV-EC

19 © OpenFabrics Alliance

recv-ec
 Waits for remote data to arrive
 Fetches data chunks from host memory

via DMA
 Puts data chunks into on-NIC buffer
 Performs EC/XOR on its local data and the

received data
 Puts result into host memory

CPU Mem RNIC

recv-ec

EC

CPU
Involvement

DYNAMIC EC GRAPH (DEG)

20 © OpenFabrics Alliance

 A dynamic acyclic graph for representing EC
schemes’ node layouts and automatically
applying INEC primitives
 Rules:
overtices with zero indegree choose ec-send (or send if there is

no computation)
overtices with zero outdegree leverage recv-ec (or recv if there

is no computation)
oother vertices utilize recv-ec-send
oexplicitly specifying computation type for each vertex

ec-send

recv-ec-send

recv-ec

MORE DETAILS

 Primitive Analysis and Performance Model
 Implemented within Mellanox OFED driver

4.7-3.2.9.0
 Co-Design: INEC-Cache

• Based on memcached (v1.5.12)
• Interleaved Architecture
o Interleave Mem Stripes into the cluster to balance

workload and resource utilizations

 H. Shi, and X. Lu, INEC: Fast and Coherent
In-Network Erasure Coding, The 32nd
International Conference for High
Performance Computing, Networking,
Storage and Analysis (SC’20)

21 © OpenFabrics Alliance

Node 1 Node 2 Node 3 Node 4 Node 5

Stripe 1

Stripe 2

Stripe 3

Stripe 4

Stripe 5

𝐴𝐴𝑖𝑖 Agent of 𝑖𝑖th Mem Stripe

𝐷𝐷𝑖𝑖 𝑖𝑖th Data Cache𝑖𝑖th Parity Cache

𝐴𝐴1
𝐷𝐷1

𝐷𝐷2 𝐷𝐷3 𝑃𝑃1 𝑃𝑃2

𝐷𝐷1
𝐷𝐷2 𝐷𝐷3 𝑃𝑃1𝑃𝑃2

𝐴𝐴2

𝐷𝐷1
𝐷𝐷2 𝐷𝐷3𝑃𝑃1 𝑃𝑃2

𝐴𝐴3

𝐷𝐷1
𝐷𝐷2

𝐴𝐴4

𝐷𝐷1
𝐴𝐴5𝐷𝐷2 𝐷𝐷3 𝑃𝑃1 𝑃𝑃2

𝐷𝐷3 𝑃𝑃1 𝑃𝑃2

𝑃𝑃𝑖𝑖

EVALUATION

22 © OpenFabrics Alliance

MICROBENCHMARK – ENCODING LATENCY

23 © OpenFabrics Alliance

RS Code

INEC improves RS by up to 2.28x

LRC Code

INEC improves LRC by up to 1.58x

TriEC Code

INEC improves TriEC by up to 3.36x

MICROBENCHMARK – ENCODING BANDWIDTH

24 © OpenFabrics Alliance

• bandwidth = (size of generated
data)/(elapsed time)

• INEC speeds up the bandwidth
of RS by up to 2.71x, LRC by up
to 2.63x, and TriEC by up to
5.87x

• TriEC with INEC primitives
achieves the best bandwidth
performance

MICROBENCHMARK – DECODING LATENCY

25 © OpenFabrics Alliance

RS Code

INEC reduces latencies of RS by up to 54.01%

ECPipe Code

ECPipe is accelerated by up to 72.25%

MICROBENCHMARK – DECODING LATENCY

26 © OpenFabrics Alliance

LRC Code PPR Code

• For small chunk sizes, INEC in LRC incurs performance degradation
• INEC reduces latencies of LRC, PPR, and TriEC by up to 57.6%, 51.2%, and 64.3%, respectively

TriEC Code

MICROBENCHMARK – DECODING BANDWIDTH

27 © OpenFabrics Alliance

• bandwidth = (size of generated
data)/(elapsed time)

• INEC outperforms the baseline
in terms of bandwidth by up to
1.86x, 2.04x, 2.03x, 2.04x, and
2.94x for RS, LRC, PPR, ECPipe,
and TriEC, respectively

IMPACT ON PERCENTILE LATENCIES OF INEC-CACHE

28 © OpenFabrics Alliance

(a) PPR(12,4) Repairing DEG (b) ec-send of Node A (c) recv-ec-send of Node B (d) recv-xor of Node C

• The latency distributions demonstrate that using INEC can alleviate the performance
fluctuation introduced by frequent context switches

• INEC reduces 50th, 95th, and 99th percentile latencies by up to 77.16%, 66.79%, and
62.40%, respectively

THROUGHPUT IMPROVEMENT OF INEC-CACHE

29 © OpenFabrics Alliance

• Improves RS, LRC, PPR, ECPipe,
and TriEC by up to 14.36%,
16.99%, 68.33%, 99.57%, and
92.26%, respectively

• An average performance boost
of up to 57% with read-
dominated workloads and an
average speedup of 28% with
write-heavy workloads

CONCLUSION

30 © OpenFabrics Alliance

H. Shi, and X. Lu, INEC: Fast and Coherent In-Network Erasure Coding, The 32nd International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’20)

© OpenFabrics Alliance31

• Can be used to co-design different distributed storage systems and EC schemes

Proposed designs in INEC are abstract and generic

• Deliver performance benefits to upper-layer applications
• Make EC more viable for designing distributed storage systems

Improved efficiency, parallelism, and overlapping

• Could be integrated into next-generation SmartNICs’ drivers

Fast and coherent in-network EC primitives (INEC) and TriEC paradigm

CONCLUSION AND IMPACT

THANK YOU
Xiaoyi Lu, Assistant Professor

University of California, Merced

2021 OFA Virtual Workshop

	INEC: In-Network Erasure Coding
	Challenges of Data Explosion
	Rethinking of Distributed Storage Systems
	EC Basics - Reed-Solomon Code
	Reed-Solomon (RS) Code
	Reed-Solomon (RS) Code
	Reed-Solomon (RS) Code
	EC: The Alternative Resilience Technique
	Brief History of Erasure Coding (EC)
	State-Of-The-Art EC Schemes
	Opportunities and Challenges
	What Can We Learn?
	Overview EC Capabilities on Modern SmartNICs
	Challenges
	INEC: Coherent In-Network EC Primitives
	INEC APIs
	Primitive Design - ec-send
	Primitive Design - recv-ec-send
	Primitive Design - recv-ec
	Dynamic EC Graph (DEG)
	More details
	Evaluation
	Microbenchmark – Encoding Latency
	Microbenchmark – Encoding Bandwidth
	Microbenchmark – Decoding Latency
	Microbenchmark – Decoding Latency
	Microbenchmark – Decoding Bandwidth
	Impact on Percentile Latencies of INEC-Cache
	Throughput Improvement of INEC-Cache
	Conclusion
	Conclusion and Impact
	THANK YOU

