UNDERSTANDING COMPUTE EXPRESS LINK 2.0: A CACHE-COHERENT INTERCONNECT

Jim Pappas, Chairman

CXL Consortium
Industry trends are driving demand for faster data processing and next-generation data center performance.
CXL CONSORTIUM

CXL Board of Directors

Industry Open Standard for High Speed Communications

150+ Member Companies
CXL DELIVERS THE RIGHT FEATURES AND ARCHITECTURE

Challenges
- Industry trends driving demand for faster data processing and next-gen data center performance
- Increasing demand for heterogeneous computing and server disaggregation
- Need for increased memory capacity and bandwidth
- Lack of open industry standard to address next-gen interconnect challenges

CXL
An open industry-supported cache-coherent interconnect for processors, memory expansion and accelerators

Coherent Interface
Leverages PCIe with 3 mix-and-match protocols

Low Latency
- Cache and Memory targeted at near CPU cache coherent latency

Asymmetric Complexity
Eases burdens of cache coherent interface designs

© OpenFabrics Alliance
REPRESENTATIVE CXL USAGES

Caching Devices / Accelerators
- Processor
- DDR
- Memory Buffers
- Accelerator NC
- Cache
- PROTOCOLS: CXL.io, CXL.cache
- USAGES: PGAS NIC, NIC atomics

Accelerators with Memory
- Processor
- DDR
- Memory Buffers
- Accelerator
- Cache
- PROTOCOLS: CXL.io, CXL.cache, CXL.memory
- USAGES: GP GPU, Dense computation

Memory Buffers
- Processor
- DDR
- Memory Buffers
- Memory Buffer
- PROTOCOLS: CXL.io, CXL.memory
- USAGES: Memory BW expansion, Memory capacity expansion, Storage class memory
THE NEW FEATURES OF CXL 2.0
DATA CENTER: LOOKING OUTSIDE IN: SCOPE OF CXL 2.0 OVER CXL 1.1

CXL 1.1 – single Node PCIe and CPU-CPU Coherency interconnect

Memory/Accelerator Pooling with Single Logical Devices

Memory Pooling with Multiple Logical Devices

© OpenFabrics Alliance
CXL 2.0 Scope: Hot-Plug, Persistence, Switching, and Dis-aggregation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXL PCIe End-Point</td>
<td>CXL device to be discovered as PCIe Endpoint. Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch Port.</td>
</tr>
<tr>
<td>Switching</td>
<td>Single level of switching with multiple Virtual Hierarchies (cascaded possible in a single hierarchy). CXL Memory Fan-Out & Pooling with Interleaving. CXL.Cache is direct routed between CPU and device with a single caching device within a hierarchy. Downstream port must be capable of being PCIe.</td>
</tr>
<tr>
<td>Resource Pooling</td>
<td>Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device to be pooled across 16 Virtual Hierarchies.</td>
</tr>
<tr>
<td>CXL.cache and CXL.mem enhancements</td>
<td>Persistence (Global Persistence Flush), Managed Hot-Plug, Function Level Reset Scope Clarification, Enhanced FLR for CXL Cache/Mem, Memory Error Reporting and QoS Telemetry.</td>
</tr>
<tr>
<td>Security</td>
<td>Authentication and Encryption – CXL.IO uses PCIe IDE, CXL defines similar capability for CXL.$Mem.</td>
</tr>
<tr>
<td>Software Infrastructure/ API</td>
<td>ACPI & UEFI ECNs to cover notification and management of CXL Ports and devices. CXL Switch API for a multi-host or memory pooled CXL switch configuration and management.</td>
</tr>
</tbody>
</table>

CXL 2.0 is fully backwards compatible with CXL 1.0/1.1 (see next slide for details). CXL 2.0 spec Rev 0.7 in Q1, 2020; Rev 0.9 in Q2, 2020, and CXL 2.0 in Q3, 2020. Predictable spec release cadence by CXL consortium to help the ecosystem plan better.
Feature Description

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| **CXL PCIe End-Point** | CXL device to be discovered as PCIe Endpoint
Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch Port |
| **Switching** | Single level of switching with multiple Virtual Hierarchies (cascaded possible in a single hierarchy)
CXL Memory Fan-Out & Pooling with Interleaving
CXL Cache is direct routed between CPU and device with a single caching device within a hierarchy. Downstream port must be capable of being PCIe. |
| **Resource Pooling** | Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device to be pooled across 16 Virtual Hierarchies. |
| CXL.cache and CXL.mem | Persistence (Global Persistence Flush), Managed Hot-Plug, Function Level Reset Scope Clarification, Enhanced FLR for CXL Cache/Mem, Memory Error Reporting and QoS Telemetry |
| enhancements | |
| **Security** | Authentication and Encryption – CXL.IO uses PCIe IDE, CXL defines similar capability for CXL.$Mem |
| **Software Infrastructure/ API** | ACPI & UEFI ECNs to cover notification and management of CXL Ports and devices
CXL Switch API for a multi-host or memory pooled CXL switch configuration and management |

CXL 2.0 is fully backwards compatible with CXL 1.0/1.1 (see next slide for details)
CXL 2.0 spec Rev 0.7 in Q1, 2020; Rev 0.9 in Q2, 2020, and CXL 2.0 in Q3, 2020
Predictable spec release cadence by CXL consortium to help the ecosystem plan better.
BENEFIT OF CXL 2.0 SWITCHING
Pooling

Memory/Accelerator Pooling with Single Logical Devices

CXL 2.0 Switch

D1 | D2 | D3 | D4 | D#

H1 | H2 | H3 | H4 | H#

Memory Pooling with Multiple Logical Devices

CXL 2.0 Switch

D1 | D2 | D3 | D4 | D#

H1 | H2 | H3 | H4 | H#
CXL 2.0 Scope: Hot-Plug, Persistence, Switching, and Dis-aggregation

Feature Description

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| **CXL PCIe End-Point** | CXL device to be discovered as PCIe Endpoint
Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch Port |
| **Switching** | Single level of switching with multiple Virtual Hierarchies (cascaded possible in a single hierarchy)
CXL Memory Fan-Out & Pooling with Interleaving
CXL.Cache is direct routed between CPU and device with a single caching device within a hierarchy.
Downstream port must be capable of being PCIe. |
| **Resource Pooling** | Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device to be pooled across 16 Virtual Hierarchies. |
| **CXL.cache and CXL.mem enhancements** | Persistence (Global Persistence Flush), Managed Hot-Plug, Function Level Reset Scope Clarification, Enhanced FLR for CXL Cache/Mem, Memory Error Reporting and QoS Telemetry |
| **Security** | Authentication and Encryption – CXL.IO uses PCIe IDE, CXL defines similar capability for CXL.$Mem |
| **Software Infrastructure/API**| ACPI & UEFI ECNs to cover notification and management of CXL Ports and devices
CXL Switch API for a multi-host or memory pooled CXL switch configuration and management |

CXL 2.0 is fully backwards compatible with CXL 1.0/1.1 (see next slide for details)

CXL 2.0 spec Rev 0.7 in Q1, 2020; Rev 0.9 in Q2, 2020, and CXL 2.0 in Q3, 2020

Predictable spec release cadence by CXL consortium to help the ecosystem plan better.
BENEFITS OF CXL 2.0
and Persistent Memory

Moves Persistent Memory from Controller to CXL

Enables Standardized Management of the Memory and Interface

Supports a Wide Variety of Industry Form Factors

CPU
DRAM CXL 1.1/1.0
CXL 2.0
Persistent Memory
Performance SSD
Capacity SSD
HDD

Latency: nanoseconds

DRAM CXL 1.1/1.0
CXL + PM Fills the Gap!

© OpenFabrics Alliance
CXL 2.0 Scope: Hot-Plug, Persistence, Switching, and Dis-aggregation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| CXL PCIe End-Point | CXL device to be discovered as PCIe Endpoint
Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch Port |
| Switching | Single level of switching with multiple Virtual Hierarchies (cascaded possible in a single hierarchy)
CXL Memory Fan-Out & Pooling with Interleaving
CXL.Cache is direct routed between CPU and device with a single caching device within a hierarchy. Downstream port must be capable of being PCIe. |
| Resource Pooling | Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device to be pooled across 16 Virtual Hierarchies. |
| CXL.cache and CXL.mem enhancements | Persistence (Global Persistence Flush), Managed Hot-Plug, Function Level Reset Scope Clarification,
Enhanced FLR for CXL Cache/Mem, Memory Error Reporting and QoS Telemetry |
| Security | Authentication and Encryption – CXL.IO uses PCIe IDE, CXL defines similar capability for CXL.$Mem |
| Software Infrastructure/API | ACPI & UEFI ECNs to cover notification and management of CXL Ports and devices
CXL Switch API for a multi-host or memory pooled CXL switch configuration and management |

CXL 2.0 is fully backwards compatible with CXL 1.0/1.1 (see next slide for details)
CXL 2.0 spec Rev 0.7 in Q1, 2020; Rev 0.9 in Q2, 2020, and CXL 2.0 in Q3, 2020
Predictable spec release cadence by CXL consortium to help the ecosystem plan better.
CXL 2.0 provides Integrity and Data Encryption of traffic across all entities (Root Complex, Switch, Device)
CXL 2.0: BACKWARDS COMPATIBLE WITH CXL 1.0/1.1

<table>
<thead>
<tr>
<th>CPU – Device Connectivity</th>
<th>CXL 1.X (1.1/1.0) EP</th>
<th>CXL 2.0 EP</th>
<th>PCIe EP/ Switch</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU with CXL 1.x</td>
<td>CXL 1.x</td>
<td>CXL 1.x</td>
<td>PCIe</td>
<td>CXL 2.0 EP needs to support both RCiEP and EP modes</td>
</tr>
<tr>
<td>CPU with CXL 2.0</td>
<td>CXL 1.x</td>
<td>CXL 2.0</td>
<td>PCIe</td>
<td>CXL 2.0 CPU also needs to be bi-modal for backwards compatibility</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CXL 2.0 Switch Connectivity</th>
<th>Operation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream: CPU</td>
<td>Only CXL 2.0</td>
<td>Since switch definition is with CXL 2.0, the platform requirement is upstream port be a CXL 2.0 CPU</td>
</tr>
<tr>
<td>Downstream: CXL Device</td>
<td>CXL 1.x or CXL 2.0</td>
<td>All downstream CXL ports work as CXL 1.x or CXL 2.0 – mix and match to the device's capability</td>
</tr>
<tr>
<td>Downstream: PCIe EP/ Switch</td>
<td>PCIe</td>
<td>Any CXL switch downstream Port must be able to support a PCIe hierarchy, either an EP or a PCIe switch but assigned to one domain</td>
</tr>
<tr>
<td>Downstream: CXL Switch</td>
<td>N/A</td>
<td>CXL 2.0 is defined only as a single level switch for multiple virtual hierarchies (no cascading of CXL switches)</td>
</tr>
</tbody>
</table>
IN SUMMARY

CXL Consortium momentum continues to grow
- 150+ members and growing
- Responding to industry needs and challenges

CXL 2.0 introduces new features & usage models
- Switching, pooling, persistent memory support, security
- Fully backward compatible with CXL 1.1 and 1.0
- Built in Compliance & Interop program

Call to action
- Join CXL Consortium
- Visit www.computeexpresslink.org for more information
- Follow us on [Twitter](https://twitter.com) and [LinkedIn](https://www.linkedin.com) for more updates!
THANK YOU
Jim Pappas, CXL Chairman
CXL Consortium