
ACCELERATING HPC RUNTIMES SUCH AS
OPENSHMEM WITH COPA

Dave Ozog, Andriy Kot, Venkata Krishnan
Intel Corporation

March 16, 2021

2021 OFA Virtual Workshop

ACK: Mike Blocksome, Oliver Serres, Pallabi Chatterjee, Poorna Shivalingappa, Brian Holland

PROBLEM STATEMENT

© OpenFabrics Alliance2

FUTURE HPC ARCHITECTURES, APPLICATIONS, MIDDLEWARE

© OpenFabrics Alliance3

HPC Middleware
OpenSHMEM, MPI
Challenges:
synchronization, memory ordering, collectives, etc...

Partitioned Global
Address Spaces

(PGAS)

HPC Applications
Tightly coupled,

heterogeneous architectures

OFI / libfabric
* Attr: Paul Downey; https://creativecommons.org/licenses/by/2.0/
+ Attr: Zureks; https://creativecommons.org/licenses/by-sa/3.0/deed.en

*

+

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

HOW DO WE ACCELERATE APPLICATIONS?

© OpenFabrics Alliance4

Option 2:

Application-aware accelerator optimizations

Option 1:

Accelerate / improve
middleware interface

standards

For example:

OpenSHMEM v1.6:
• Non-blocking

collectives
• Per-PE fence

Extend middleware interfaces

For example:

• FI_ACCELERATION*
• SHMEMX interfaces

Offload custom app-specific
patterns

For example:

• Custom collective ops
• Data transformation (e.g.

compression, filtering)

* Enhancing OFI for Invoking Acceleration Capabilities on an
Integrated Networking/Accelerator Platform (COPA) (OFAWS 2020)

CAN COPA ACCELERATE MIDDLEWARE?

© OpenFabrics Alliance5

 Recently defined an acceleration model for COPA✯

 Can OpenSHMEM and MPI interfaces benefit from COPA’s
acceleration capabilities? Likely – e.g. collectives, per-PE
fence/quiet, put w/ signal, etc.
 What about application-level optimizations? Yes.
 Co-design effort OpenSHMEM + COPA SW/HW teams.

 Our Primary Goal: Run full OpenSHMEM on COPA HW.
 Future Plan: Prototype and analyze our ideas for

OpenSHMEM/MPI/collectives accelerations

✯ Configurable Network Protocol Accelerator (COPA)
For details, see Hot Interconnects (HOTI) Aug 2020 & IEEE Micro Jan 2021

COPA BACKGROUND

© OpenFabrics Alliance6

COPA † IS THE POC PLATFORM FOR OFI EXTENSIONS
(A SOFTWARE/HARDWARE FRAMEWORK FOR DISTRIBUTED FPGA COMPUTING)

Provides an integrated networking and accelerator
framework with programming simplicity

• Supports RDMA (PUT/GET) based communication
over commodity networks.

• Accelerators invoked as part of communication.
• Familiar environment developed around open

standards (e.g. libfabric/OFI)

Customizable framework for specific deployments

• Provides a modular architecture - can add necessary
IP (accelerator) blocks and new features for a
customized solution

Open Fabrics Interface (OFI)*
OFI is extended to expose acceleration

capabilities to application

OFI Provider for COPA

COPA Transport +
Accelerators

COPA Driver

Shim layer (Ethernet)

Host Interface
PCIe/CXL/UPI to Xeon (or) AXI to ARM on FPGA SoC

So
ft

w
ar

e

Applications/Middleware

H
ar

dw
ar

e

Ethernet MAC

100GigE

CO
PA

†COPA = COnfigurable network Protocol Accelerator

7

SYSTEM COMPONENTS
OFI stack on FPGA SOC and FPGA PCIe (currently on Stratix 10)

© OpenFabrics Alliance8

8

FPGA Sensors

100G
Ethernet

FPGA

Embedded
ARM

FPGA

Embedded
ARM

Network
Ports

Network
Ports

Shim interface
Custom hardware IP*

H
ar

dw
ar

e
IPCompute

Node Compute
Node

Open Fabrics Interface
OFI is extended to expose
acceleration capabilities

OFI provider

Transport/Accelerators

Driver

Shim layer (Ethernet)

Host Interface

H
ar

dw
ar

e

Ethernet MAC

So
ft

w
ar

e

Transport/Accelerators
Shim layer (Ethernet)

Ethernet MAC
FPGA

FPGA

Network
Ports

100GigE

100GigECAN MIX/MATCH 3 OPTIONS WITH FULL
INTEROPERABILITY SUPPORTED – HIGHLY FLEXIBLE

COPA SOFTWARE STACK

© OpenFabrics Alliance9

Open Fabrics Interface (OFI)

OFI provider for COPA (libfabric)

COPA hardware library (libchw)

COPA device driver

COPA FPGA hardware

Applications / Middleware • Open Fabrics Interface (OFI) implementation
• Main application programming interface to COPA functionality
• Extended for acceleration
• All access to COPA FPGA through COPA hardware library

(libchw) for kernel bypass

• Main system programming interface to COPA FPGA hardware
(ioctl syscalls)

• Opens device and mmap’s hardware command queues and
event queues into user process address space

• Optionally hardware emulation mode - COPA functional model

• Memory map CSRs and command queues at initialization time
• Initialize E2E connection table
• Provides memory pinning and virtual-to-physical address

translation
• Not accessed on critical path - Userspace application software

interacts with hardware using mmaped command queues

OPENSHMEM ACCELERATION

© OpenFabrics Alliance10

OPENSHMEM CRASH COURSE

© OpenFabrics Alliance11

Symmetric
Data

Symmetric
Heap

Private Data

Process 0

Symmetric
Data

Symmetric
Heap

Private Data

Symmetric
Data

Symmetric
Heap

Private Data

…

R
em

ot
el

y
Ac

ce
ss

ib
le

Process 1 Process N
OpenSHMEM:
• Open standard PGAS model: emphasizes one-sided

operations (put/get/atomics w/ RDMA)
• Symmetric memory exposed for remote access

across processing elements (PEs)
• This work uses Sandia OpenSHMEM (SOS) v1.5.0

Operations:
• RMA/AMO: put/get, remote atomics
• Collectives: barrier, broadcast, reductions, etc.
• Memory ordering: fence and quiet

Specification:
• Currently version 1.5
• Upcoming: spaces, NB collectives, per-PE

fence/quiet, and more
PEs “own” symmetric

data partitions

* OpenSHMEM and OFI: Better Together (OFAWS 2018)

PRACTICAL MATTERS / WORKAROUNDS

© OpenFabrics Alliance12

 Some practical matters need to be addressed to run SOS on COPA:
• FI_CONTEXT2:

• COPA leverages FI_CONTEXT2 (64B), but SOS doesn’t currently pass contexts to communication ops.
• Solution: COPA now supports an internal context2 pool so apps don’t need to bother with contexts.

• FI_PROGRESS_MANUAL:
• COPA does not yet support full automatic progress; SOS (the stable release) doesn’t fully support manual.
• Solution: hacked an unofficial version of SOS with a timer-based progress thread (caveat: no private contexts).

• FI_MR_LOCAL:
• HW requires all buffers to be registered, but OpenSHMEM supports src buffers outside symmetric heap.

• Registered memory must be physically contiguous – this means we might have to strip out global/static variables.
• Remote atomics support is currently in software only.
• Optional, not yet supported: FI_THREAD_DOMAIN, FI_RMA_EVENT, FI_FENCE, FI_DELIVERY_COMPLETE
• Fence/quiet operations leverage libfabric counters

 Let’s dive into the counters – they’re interesting and important.

SANDIA OPENSHMEM PUT/GET COUNTERS

© OpenFabrics Alliance13

1 0 0 0

2 0 0 0

2 1 0 0

2 2 1 0

3 2 1 0

3 3 1 2

3 3 3 3

put(..., PE1)

put(..., PE2)

get(..., PE1)

get(..., PE2)

amo_inc(..., PE1)

amo_fetch(..., PE2)

fence*/quiet()

pending
put

pending
get put getSHMEM Program

libfabric
counters

Local atomics

1 put/get counter pair
per SHMEM ctx

* fence != quiet on ordered networks in SOS, get_wait() only...

Target (RX) counter
support, if available

Example “trace” of put/get counters througout a simple OpenSHMEM program:

COPA HARDWARE COUNTERS

© OpenFabrics Alliance14

 Implemented as Control Status Registers (CSRs)
 CSRs are setup to atomically operate on counters (read/write, inc., trigger)
 COPA supports 512 counters now, but this number is flexible.
 All CSRs are mapped to individual PEs for counter isolation.
 Reading CSRs is expensive, so HW periodically performs a write-back of the

counter values to host memory.
Write-backs occur only during wait() operations:

• no timer-based write-backs yet, but could be added later.
• wait() has a desired trigger value. When met, HW does a write-back.
 Incrementing by 0 performs write-back to host memory.

COPA HARDWARE COUNTERS

© OpenFabrics Alliance15

COPA HW counters enable:

• An optimized per-PE fence/quiet interface (e.g., as proposed for OpenSHMEM v1.6):

• Per-operation completion tracking in the OpenSHMEM runtime
• Applications tend to quiet many puts, gets, or AMOs in isolation (i.e. not mixed)
• Possible advantage in tracking operation-specific completions

shmem_fence()
shmem_quiet()

shmem_pe_fence(ctx, target_pe)
shmem_pe_quiet(ctx, target_pe)

Proposed (v1.6) interface:

Current (v1.5) interface:
shmem_ctx_fence(shmem_ctx_t ctx)
shmem_ctx_quiet(shmem_ctx_t ctx)

shmem_ctx_pe_fence(ctx, target_pe)
shmem_ctx_pe_quiet(ctx, target_pe)

CURRENT STATUS

© OpenFabrics Alliance16

Current Status:

• We are very close to full SOS support with the COPA libfabric provider.

• Several temporary workarounds are in place (see slide 12), next steps are to modify them.

Future Work:

• MPI validation – potentially fewer workarounds (manual progress support, FI_CTX2, etc.)

• Implement proposed OpenSHMEM optimizations (in HW where possible).

• Performance analysis of microbenchmarks and key applications.

CLOSING REMARKS

Summary:
 COPA provider exposes acceleration capabilities via OFI.
 Several opportunities to accelerate OpenSHMEM with COPA+OFI.
 Co-design HW/SW effort is underway and inspiring promising ideas.
 COPA counters are flexible, performant, OFI/SOS compatible, and

enable optimizations like per-PE fence/quiet and per-op tracking.

Future:
 Long-term prospects to extend OpenSHMEM, MPI, and OFI

interfaces and capabilities.
 Compute is moving into the fabric, and COPA will customize for HPC

application and middleware accelerations.

OFI’s open
standard &
definition of
communication API
agnostic to
protocols/hardware
makes it ideal to
include
acceleration
extensions

© OpenFabrics Alliance17

THANK YOU
2021 OFA Virtual Workshop

BACKUP

© OpenFabrics Alliance19

SmartNIC
Accelerator Domain

(target)

ACCELERATOR MODELS (INTEGRATED WITH NETWORKING)

© OpenFabrics Alliance20

SmartNIC
Accelerator Domain

Compute
Node

Inline

Lookaside

Inline accelerators perform compute on data during
transmit/receive operation (streaming model)

Lookaside accelerators – Traditional
acceleration model. However output data can be
directly transmitted to target over network without
requiring data movement back/forth to host

Remote Mode Inline/Lookaside
accelerators can be triggered by incoming
packet. No host/OS involvement

N
et

w
or

k
po

rt

Network

N
etw

ork
port

Inline

Lookaside

Memory Storage

Memory Storage

COPA
FPGA
Node

COPA
FPGA
device

Compute
Node

…

Naturally extends to
offloading
collectives,
reduction, atomics,
distributed hash
lookup etc.

SmartNIC
Accelerator

Domain
(Target)

Need for a standard API to expose acceleration modes to middleware & applications

Could hang off a
switch port
(headless) or be
an integral part
of the switch

APPROACH – USE OFI (WITH EXTENSIONS)
Extend a network API to include acceleration support to support a truly scalable model

© OpenFabrics Alliance21

libfabric

Intel® MPI
Library MPICH Open MPI

SHMEM
Sandia

SHMEM GASNet Clang
UPC

libfabric Enabled Middleware

Sockets
TCP, UDP Verbs Cisco

usNIC
Intel

OPA, PSM
Cray
GNI

Mellanox
UCX

IBM Blue
Gene

Shared
Memory

RxM,
RxD,

Others: rsockets, PMDK, Spark, ZeroMQ,
TensorFlow, MxNET, NetIO, Intel MLSL, …Charm++ Chapel

HPE
Gen-Z

Advanced application oriented semantics

Tag Matching
Scalable
memory

registration

Triggered
Operations

Multi-
Receive
buffers

Reliable Datagram Endpoints

Remote
Completion
Semantics

Streaming Endpoints

Shared
Address
Vectors

Unexpected
Message
Buffering

Network
Direct

OFI Providers
NEW

PROVIDER

Accelerators
inline/lookaside
local & remote

 Extending an accelerator API (e.g. OpenCL) to support networking is not scalable

Applications can use OFI directly.
Middleware need to be extended to use underlying accelerator support

CURRENT VISION OF SOLUTION

Application
driven APIs

Open source
communication

framework

Hardware vendor
specific

implementation Define mechanism to pass
input/output parameters
and invoke acceleration

Extend existing
communication framework to
support acceleration functions

APIs targeting application
use of specific accelerations

Based on internal
hardware prototyping –

FPGA-based

OFI COPA PROVIDER

 Full featured OFI provider

 Only small changes needed to add
acceleration to existing OFI-enabled
middleware and applications

 Temporary until official OFI support

 Minimal OFI extensions to enable
“inline” and “lookaside” COPA
acceleration
• Extend semantics of data structures and operations

• Define new FLAGS for acceleration

 Implements a wide variety of interfaces
to support many kinds of HPC
middleware
• FI_MSG, FI_TAGGED, FI_RMA
• FI_PROGRESS_MANUAL,

FI_THREAD_COMPLETION, FI_AV_MAP
• FI_EP_RDM

© OpenFabrics Alliance23

ENABLE ACCELERATION

24 © OpenFabrics Alliance

 New FI_ACCELERATION flag informs
provider application wants inline
accelerator to be invoked during a data
movement operations

 FI_ACCELERATION flag can be set on
the endpoint object to invoke
acceleration on all endpoint data
movement operations
• fi_control() with FI_SETOPTS

 Alternatively, FI_ACCELERATION flag can be
specified for individual data movement
operations
• fi_write_msg()
• fi_read_msg()

ACCELERATOR OUTPUTS

 Output data may be provided as a result
of acceleration

 Available for endpoints bound to a
completion queue initialized with data
format
• FI_CQ_FORMAT_DATA
• FI_CQ_FORMAT_TAGGED

 FI_ACCELERATION flags, etc., are set in
the flags field
• FI_CQ_FORMAT_MSG

25 © OpenFabrics Alliance

 Normally the completion entry data field
is for remote metadata

 Extend the data field semantics for
initiator acceleration output

struct fi_cq_data_entry {
void *op_context; /* operation context */
uint64_t flags; /* completion flags */
size_t len; /* size of received data */
void *buf; /* receive data buffer */
uint64_t data; /* completion data */

};

LOOKASIDE ACCELERATION

 Local operation – no fabric
communication involved

 Complex accelerators that do not fit in
the packet pipeline (inline acceleration)

 Same mechanism as inline to invoke
lookaside acceleration
• fi_read(), fi_write(), etc.
• FI_ACCELERATION

26 © OpenFabrics Alliance

 Lookaside accelerator flags
• FI_LOOKASIDE_ACCELERATION_*

 Current restrictions
• physically contiguous memory for all inputs and

outputs

	Accelerating HPC Runtimes such as OpenSHMEM with COPA
	PROBLEM STATEMENT
	future HPC Architectures, applications, middleware
	How do we accelerate applications?
	can COPA Accelerate middleware?
	COPA BACKGROUND
	COPA † IS THE POC PLATFORM FOR OFI EXTENSIONS �(A SOFTWARE/HARDWARE FRAMEWORK FOR DISTRIBUTED FPGA COMPUTING)
	SYSTEM COMPONENTS
	COPA SOFTWARE STACK
	OpenSHMEM Acceleration
	Openshmem crash course
	Practical Matters / Workarounds
	Sandia OpenSHMEm put/get counters
	COPA Hardware counters
	COPA Hardware counters
	Current status
	CLOSING REMARKS
	THANK YOU
	BACKUP
	Accelerator models (Integrated with networking)
	APPROACH – USE OFI (with EXTENSIONS)
	CURRENT Vision of Solution
	OFI COPA PROVIDER
	Enable acceleration
	Accelerator outputs
	Lookaside acceleration

