
REMOTE PERSISTENT MEMORY ACCESS
AS SIMPLE AS LOCAL MEMORY ACCESS

Tomasz Gromadzki, Software Architect (RPMem)

Intel Corporation

2021 OFA Virtual Workshop

WHAT IS PERSISTENT MEMORY (PMEM)?

 allow accessing data as memory
• directly
• byte-addressable

 the contents are non-volatile (preserved across power cycles).
 it doesn’t typically replace either memory or storage

 For more information please visit:
• pmem.io
• Persistent Memory Development Kit (PMDK) GitHub repo

pmem.io/book

2 © OpenFabrics Alliance

https://pmem.io/
https://github.com/pmem
https://pmem.io/book

PERSISTENT MEMORY PROGRAMMING MODEL

Storage Networking Industry Association (SNIA) standardized
Software Persistent Memory (PMem) programming model

When writing data to PMem, in order for the data to be considered persistent:
• After writing to persistent memory, the software is responsible for

flushing data from CPU caches to the Persistence Domain
• Once the CPU caches are flushed of write data,

the platform guarantees the write data is persistent, should power be lost

3 © OpenFabrics Alliance

IMPLEMENTING THE PMEM PROGRAMMING MODEL
OVER AN RDMA NETWORK (APM)

Application DRAM

Initiator System

RDMA
Network

RNIC RNIC PMem

Target System
APP HW

RDMA READ

RDMA READ RSP

RDMA WRITE

RDMA WRITE RSP

Application DRAM

Initiator System

RDMA
Network

RNIC RNIC PMem

Target System

Writing data
to remote
persistent memory

Flushing previously
written data to remote
persistent memory

The RDMA Write response only tells the Application that the Target RNIC
has sent the write data on to the final storage location in persistent
memory.

As the programming model states, the Application will need to execute a
flush to make sure the data has been flushed to the persistence domain.

The RDMA Read forces any write data to the persistence domain before the RDMA
Read can proceed. This is because the ordering rules of both RDMA and PCIe.“Appliance Persistency Method”

4 © OpenFabrics Alliance

Application

Application DRAM

Initiator System

RDMA
Network

RNIC RNIC PMem

Target System

APP HW

Initiator RDMA Send

Target RDMA Send

RDMA WRITE

RDMA WRITE RSP

Application DRAM

Initiator System

RDMA
Network

RNIC RNIC PMem

Target System

Flushing previously written data to
remote persistent memory – DDIO
ON

CPU
CACHE

CPU
CACHE

Target CLFLUSHOPT

1) The Application sends a list of address ranges to flush in the payload of the
RDMA Send command. When the Target RNIC executes the RDMA Send
message it interrupts the Application running on the Target system.

2) The Application issues CLFLUSHOPT instructions for
each cache line (64B) of data in the flush list. It then
issues an SFENCE instruction to make sure other reads
and writes can’t pass this write data.

3) The Application issues an RDMA Send command back to the
initiator to acknowledge the completion of the flush operations.

“General Purpose Server Persistency Method”

Writing data to
remote persistent
memory - DDIO ON

IMPLEMENTING THE PMEM PROGRAMMING MODEL
OVER AN RDMA NETWORK (GPSPM)

5 © OpenFabrics Alliance

PMEM AND RDMA

RDMA accesses Intel® Optane™ PMem
in the same way it accesses DRAM

Remote PMem (RPMem)
is about well-known technologies

(like PCIe, RDMA) used in a new way

6 © OpenFabrics Alliance

THE NEW LIBRPMA FOCUSES ON RPMEM USABILITY

 memcpy-like API
 Hidden RDMA complexity
 Application can freely manage

your PMEM all the time
 Minimum dependencies
 Enables Persistent Memory

Programming Model

up to 50% RPMem source code
reduction in an application that

moves from libibverbs to librpma

© OpenFabrics Alliance7

librpma

LIBRPMA API

8

• Connection management
• to ensure operations consistency
• to hide RDMA complexity

• Remote Persistent Memory Access
(RPMA)

• Read, Write, Flush, Atomic write

• Messaging
• also with PMEM-backed message buffers

• Memory management

• r_key exchange support

• Ready to incorporate RDMA Memory
Placement Extension

ConnectAccept

Shutdown
Monitor

Write
Read

Atomic
write

Flush

Send/Receive

Memory
descriptor

Scalability
New RDMA
Verbs Ready

REFACTORED
NEW

© OpenFabrics Alliance8

rpma_mr_reg(peer,

ptr, size,

RPMA_MR_USAGE_WRITE_DST |

RPMA_MR_USAGE_FLUSH_TYPE_PERSISTENT,

&dst_mr);

rpma_mr_reg(peer,

ptr, size,

RPMA_MR_USAGE_WRITE_SRC,

&src_mr);

BASIC EXAMPLE – MEMORY REGISTRATION

Target node

Initiator node

© OpenFabrics Alliance9

BASIC EXAMPLE – REMOTE PERSISTENT MEMORY WRITE

rpma_write(conn,

dst_mr, dst_offset,

src_mr, src_offset,

KILOBYTE, RPMA_F_COMPLETION_ON_ERROR, NULL);

Target nodeInitiator node

© OpenFabrics Alliance10

BASIC EXAMPLE – REMOTE PERSISTENT MEMORY WRITE

rpma_write(conn,

dst_mr, dst_offset,

src_mr, src_offset,

KILOBYTE, RPMA_F_COMPLETION_ON_ERROR, NULL);

rpma_flush(conn,

dst_mr, dst_offset,

KILOBYTE, RPMA_FLUSH_TYPE_PERSISTENT,
RPMA_F_COMPLETION_ALWAYS, FLUSH_ID);

Target node

https://github.com/pmem/rpma/tree/master/examples/05-flush-to-persistent

Initiator node

© OpenFabrics Alliance11

https://github.com/pmem/rpma/tree/master/examples/05-flush-to-persistent

LIBRPMA EXAMPLES COLLECTION

© OpenFabrics Alliance12

Connection establishment and management
Read/write from/to DRAM/PMem
Multiple connections (scalability)
Atomic write
Messaging
Flush to persistent (both APM and GPSPM)
Send/Write with immediate data

rpma_utils_get_ibv_context(SERVER_ADDR,
RPMA_UTIL_IBV_CONTEXT_REMOTE, &dev);

PEER SETUP

© OpenFabrics Alliance13

rpma_utils_get_ibv_context(SERVER_ADDR,
RPMA_UTIL_IBV_CONTEXT_LOCAL, &dev);

rpma_peer_new(dev, &peer);

Server
node

Client
node

Common

rpma_conn_cfg_new(&conn_cfg);

rpma_conn_cfg_set_cq_size(conn_cfg, 5);

…

rpma_conn_req_connect(conn_req, NULL, &conn);

rpma_conn_next_event(conn, &conn_event);

assert(conn_event == RPMA_CONN_ESTABLISHED);

rpma_ep_listen(peer,
SERVER_ADDR, SERVER_PORT, &ep)

rpma_ep_next_conn_req(ep, conn_cfg, &con_req));

CONNECTION SETUP

© OpenFabrics Alliance14

rpma_conn_req_new(peer,
SERVER_ADDR, SERVER_PORT,
conn_cfg, &conn_req);

Server
node

Client
node

Common

rpma_conn_next_event(conn, &conn_status);

if(conn_status == RPMA_CONN_CLOSED) {

rpma_conn_disconnect(conn);

rpma_conn_delete(&conn);

}

DISCONNECT

© OpenFabrics Alliance15

rpma_conn_disconnect(conn);

rpma_conn_next_event(conn, &conn_status);

assert(conn_status == RPMA_CONN_CLOSED);

rpma_conn_delete(&conn)

Server nodeClient node

GPSPM EXAMPLE
(09-FLUSH-TO-PERSISTENT-GSPSPM)

 APM’s Flush and GPSPM’s Flush do the same thing but they are not semantically the same

 GPSPM Flush can be combined with other application’s operations

 No common API for APM and GPSPM flushes as we want to provide messaging API for
applications

© OpenFabrics Alliance16

LIBRPMA 0.9 FEATURES

 Establishing an RDMA connection with a remote node and monitoring connection status
• Configurable connection parameters
• Exchanging small information during the connection establishment process
 Read remote memory (both persistent and volatile)
 Write to remote memory (both persistent and volatile)
 Ensuring data placement within the memory subsystem of a remote node (flush)
 Executing an atomic write (Intel platform-specific via standard aligned RDMA Write with appropriate

fencing; native AtomicWrite-ready)
 Polling, in a non-blocking way, for RDMA operations completions and connection status changes
 Logging all diagnostic/status to syslog and/or on stderr
 A transparent FileSystem DAX support (on selected RNICs)
 Providing easy to use RDMA Send/Receive messaging (also with PMem-backed buffers)

 Additionally:
• Examples collection
• A Fio based benchmarking environment

© OpenFabrics Alliance17

THE LIBRPMA LIBRARY ONE YEAR LATER

 Use cases
• The librpma is going to be used in Ceph and SQL-like engine
• The librpma library is utilized by a number of customers as a reference solution
• The librpma library is used as a fast RPMem ramp up tool

• FIO engines for APM, GPSPM and AoF are based on librpma
• all of these allows for easy, on-premise RPMem benchmarking

 API is stable but small tuning is still possible in response to customer feedback (0.9)

 New features under development(performance and usability improvements)
• Separate Receive Completion Queue
• More examples

• Send/Recv with PMem
• Connection errors handling

© OpenFabrics Alliance18

RPMEM BENCHMARKING ENVIRONMENT

 Fio engines (librpma APM/GPSPM, librpma AoF)
github.com/pmem/fio => github.com/axboe/fio/pull/1186
• bandwidth/latency
• remote DRAM vs RPMEM (dev-dax, fs-dax)
• numjobs, blocksize, iodepth, readwrite

 pmem.io/rpma
• Performance – Tuning blog describing RPMem related BIOS/OS settings
• Direct Write to PMem blog describing RPMem enabling on Intel servers

 github.com/pmem/rpma/tree/master/tools/perf
• rpma_fio_bench.sh – to collect performance data

• Fio job files templates
• remote DDIO control, local/remote NUMA control, PMem/DRAM

• csv_compare.py - for results comparison (research, manual analysis)
• create_report.sh - for comprehensive performance report

• rpma_fio_bench.sh 192.168.1.1 all all all
• adjustable report template

19 © OpenFabrics Alliance

https://github.com/pmem/fio
https://github.com/axboe/fio/pull/1186
https://pmem.io/rpma
https://github.com/pmem/rpma/tree/master/tools/perf

BENCHMARKING TOOLSET

github.com/pmem/rpma/tree/master/tools/perf

ib_read.sh

#!

rpma_fio_bench.sh

#!

csv

csv_compare.py

create_report_figures.sh create_report.py

https://github.com/pmem/rpma/tree/master/tools/perf

MORE DOCUMENTATION AVAILABLE

Visit
 pmem.io/rpma for official documentation
 github.com/pmem/rpma to

• build the library
• run the examples
• setup the benchmarking environment

You do not need neither an Intel® Optane™ PMem nor RDMA-capable NIC to start examples

You can play with RPMA examples on any Linux desktop

21 © OpenFabrics Alliance

https://pmem.io/rpma
https://github.com/pmem/rpma

THANK YOU
Tomasz Gromadzki, Software Architect (RPMEM)

Intel Corporation

2021 OFA Virtual Workshop

LEGAL NOTICE AND DISCLAIMERS
This document contains information on products in the design phase of development. The information here is subject to change without
notice. Do not finalize a design with this information.
No License (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Performance varies depending on system configuration. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which
includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products
described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

Intel, the Intel logo, Intel Xeon, and Optane Persistent Memory are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as property of others.

© 2021 Intel Corporation.

23 © OpenFabrics Alliance

BACKUP

© OpenFabrics Alliance24

IS THE LIBRPMA ATOMIC WRITE AN ATOMIC OPERATION?

 IBTA Spec does not support atomicity for RDMA Write

 librpma implementation assumes the aligned 8-byte data won't be torn either in RDMA
HW/SW stack or on the PCIe bus level

 The current implementation explicitly uses fencing to ensure ordered data processing
according to the upcoming RDMA.AtomicWrite ordering rules

 The native RDMA.AtomicWrite will be used whenever and wherever it will be available

© OpenFabrics Alliance25

	Remote Persistent Memory Access �as Simple as Local Memory Access
	What is Persistent Memory (PMem)?
	Persistent Memory Programming Model
	Implementing the PMem programming model�over an RDMA network (APM)
	Slide Number 5
	PMem and RDMA
	The new librpma focuses on RPMem usability
	librpma API
	Basic example – memory registration
	Basic example – REMOTE PERSISTENT MEMORY WRITE
	Basic example – REMOTE PERSISTENT MEMORY WRITE
	librpma examples Collection
	Peer setup
	Connection setup
	Disconnect
	GPSPM example�(09-flush-to-persistent-GSPSPM)
	librpma 0.9 features
	The librpma library one year later
	RPMem benchmarking Environment
	Benchmarking toolset
	More documentation available
	THANK YOU
	Legal Notice and Disclaimers
	BACKUP
	Is the librpma Atomic Write an atomic operation?

