
Gen-Z Linux Subsystem Update
Jim Hull, Sr. Software Engineer

IntelliProp, Inc.

2021 OFA Virtual Workshop

AGENDA

 Gen-Z Introduction
 Gen-Z Linux Subsystem
 Live Demo

2 © OpenFabrics Alliance

Gen-Z Introduction

3 © OpenFabrics Alliance

GEN-Z, A NEW OPEN INTERCONNECT PROTOCOL

4

I/O

Accelerators

FPGA
GPU

CPUs

SoC
ASICAI

MemoryMemory

Network Storage

Direct Attach, Switched, or Fabric Topology

Memory technologies

DRAM NVM SCM…

SoC

Memory

 Open consortium with broad industry support (70+ members)

 Family of Specifications: Core, Physical Layer, Mechanical,
Scalable Connectors, Management

 Gen-Z is a memory semantic fabric that scales from 2 to
256M components

 PHY-independent protocol
 Specific PHY determines latency/bandwidth/reach
 32 GT/s PCIe PHY, 25 Gbit and 50 Gbit 802.3 PHYs

 Can support an unmodified OS (e.g. firmware with ACPI
support and Logical PCI Devices (LPDs))

 Better to modify OS, e.g., Linux, for full Gen-Z support

EXAMPLE GEN-Z FABRICS

5

SwitchSwitch 0,0

CPUs

Bridge
Node

SwitchSwitch 1,0

SwitchSwitch 0,1

SwitchSwitch 0,N

SwitchSwitch M,0

SwitchSwitch M,1SwitchSwitch 1,1

SwitchSwitch 1,N SwitchSwitch M,N

CPUs

Bridge
Node

CPUs

Bridge
Node

2D HyperX System Topology

Nodes Nodes Nodes

Nodes Nodes Nodes

Simple 6 Component Topology

GEN-Z MANAGEMENT SOFTWARE

6

 Gen-Z fabric spans multiple OS instances
 No OS instance can assume it “owns” all components on fabric

 Components can be subdivided into resources
 Example: a big media component split up

 A fabric manager assigns components/resources to each
OS according to a “grand plan”
 Describes components/resources using a DMTF Redfish specification
 In-band vs out-of-band
 Programs routing tables, access controls, etc.

 Local Management Services run on each OS instance
 Consumes Redfish description for its OS instance

BASIC GEN-Z CONCEPTS

7

• Basic component roles
• Requester: initiates packet
• Responder: responds to request packet and sends

acknowledgement (if specified)
• Switch: routes packets from ingress interface to one or more

egress interfaces

• Components have a 28-bit global component ID (GCID)
assigned by management software

• Optional 16-bit subnet ID (SID) plus 12-bit component ID (CID)

• Components have separate control and data space
• Up to 2^52 bytes of control space for management
• Up to 2^64 bytes of data space for component specific

functionality

• Packets are unordered by default (big difference from PCIe)
• Software-managed coherence

Component—CID 1

Control Address Space
Address

0—X

Data Address Space
Address

0—Y

Interface 0 Interface 1

CONTROL SPACE STRUCTURES

8

 Conceptually similar to PCIe
config space, but more
elaborate

 Core Structure always at
Control Space address 0

 Follow pointers to find other
Structures and Tables

 These structures exist
independent of in-band vs.
out-of-band management

Control Space

Component Media Structure

Component Extensions
Structure

Component Statistics
Structure

Component OpCode Set
Structure

Component Error Structure

Component Destination
Table Structure

Component Switch Structure

Component Event Structure

Component RKD Structure

Service ID Structure

Interface 0
Structure

Interface 1
Structure

Interface N
Structure

Interface PHY Structure

Interface Statistic Structure

Interface Vendor-Defined
Structure

Vendor-Defined Structure

Core
Structure

BRIDGE COMPONENT BLOCK DIAGRAM

9

Memory

CPU

Bridge

Requester
ZMMU

Gen-Z
Control
Space

Gen-Z Requester

o o oo o o

ZA
, G

C
ID

, R
-K

ey

ZA
, R

-K
ey

MMU

PA PA

IOVA, PASID

Receive
Data

Mover
(RDM)

IOMMU

IOVA, PASID

Responder
ZMMU

In-Band Management: ZA, R-Key

Transmit
Data

Mover
(XDM)

PA

To Gen-Z Links From Gen-Z Links

PA PA

Gen-Z Responder

Gen-Z Linux Subsystem

10 © OpenFabrics Alliance

WHY A GEN-Z SUBSYSTEM?

11

 Enable native device drivers, exposing the full capabilities of Gen-Z

• Enables access to Gen-Z advanced features

• Sharing of fabric resources across Linux instances

• Common support code not duplicated in every bridge driver

 Enable user space fabric managers and local management

services

• Both in-band and out-of-band fabric managers

 Interrupts
 Atomics
 R-Key Update Packets
 Buffer Requests
 Pattern Requests
 Multi-Op Requests
 Precision Time
 Lightweight Notification
 Wake Thread
 Packet Encapsulation
 Transparent Routers
 Strong Ordering

Domains

Gen-Z Advanced Features

DESIGN CONSIDERATIONS

12

 Be like PCI, USB and other existing buses when we can

 Policy in user space and mechanism in the kernel

 Use existing kernel services

 Deal with “almost everything is optional in Gen-Z”

GEN-Z SUBSYSTEM BLOCK DIAGRAM

13

U
se

r S
pa

ce

/sys file system infrastructure

K
er

ne
l S

pa
ce

Remotely Managed Enumeration Data

Standard Posix API

udev daemon

Driver: Gen-Z Bridge Device

Gen-Z infrastructure

Driver: Gen-Z native device

Linux Application

Linux Local Management
Service (LLaMaS)

Hotplug infrastructure

Existing
New for Gen-Z in Linux
Created by Device Manufacturer

Gen-Z Driver infrastructure

bus

DMA

Generic Netlink

Gen-Z Fabric Manager
(Zephyr)

GEN-Z DRIVERS

 Bridge driver
• Is discovered by host bus “native” discovery method (e.g., PCIe, ACPI)
• Registers with the Gen-Z subsystem
• Implements a set of APIs to allow subsystem to read/write/mmap control & data space

 Gen-Z device driver
• Modeled after PCI’s interfaces except driver matching is by UUID rather than vendor/device ID

 Special “generic” Gen-Z device drivers
• genz-blk

• Makes a region of Gen-Z data space visible to host as a DAX-enabled block device
• genz-mem

• Makes a region of Gen-Z data space visible to host as system memory
• genz-enic

• Creates an emulated Ethernet network on the Gen-Z fabric

14 © OpenFabrics Alliance

DATA MOVERS

15

 Kernel drivers like a block or eNIC driver would benefit from a generic data mover API
● Data mover queues can be assigned to other Gen-Z drivers
● Drivers can use a data mover to generate special Gen-Z packet types like atomics, write message, buffer and

pattern requests
● Allows bridge HW vendors to innovate

 RDMA drivers want to expose the native data mover hardware directly to user space
● A generic Gen-Z subsystem kernel data mover API is irrelevant
● Userspace libraries like libfabric can hide HW differences from apps
● Is a libfabric provider per HW vendor reasonable, or does there need to be some HW standardization?

INTERRUPTS AND UNSOLICITED EVENT PACKETS

 Not like PCI’s architected MSI/MSI-X interrupts
 Gen-Z fabric interrupt sources:

• Gen-Z interrupt packets from components
• UEPs

 Unsolicited Event Packets (UEP) signal fabric state changes like
• Link-up/down
• Hot add/remove of component
• Errors

 UEPs become interrupts from the targeted bridge component
• Bridge driver forwards UEP to subsystem
• Subsystem forwards to zephyr or llamas in userspace

16

Live Demo

17 © OpenFabrics Alliance

DEMO HW TOPOLOGY
 Two components directly connected

• Gen-Z Bridge (codename Orthus)
• Gen-Z Memory Module (ZMM)

18

Gen-Z Switch

XCVR

Link

Gen-Z 802.3
Phy

XCVR

Link

Gen-Z 802.3
Phy

25 Gbps x4 link

25 Gbps x4 link
Control

Structures

Reqr

Requester
ZMMU

axi hp
slave
128b

axi lp
slave
32b

RAW_CB

axi hp
m

aster
128b

AXI Crossbar

A53
A53

A53
A53

PS DDR4 Subsystem

Pr
oc

es
si

ng

Sy
st

em
Pr

og
ra

m
m

ab
le

 L
og

ic

CCI OCM
USB

UART
1G Eth

Xi
lin

x
Zy

nq
 M

PS
oC

 E
19

CDMA

PL DDR4
MC

DR
AM

DR
AM

DR
AM

DR
AM

DR
AM

DRAM

DRAM

DRAM

DRAM

DRAM

72b DDR4-2400

axi hp
m

aster
256b

Resp

Responder
ZMMU

URAM

axi hp
m

aster
128b

Orthus

Gen-Z Link

REFERENCES

3/19/202119

 Gen-Z Consortium for specifications: genzconsortium.org

 Gen-Z Linux Subsystem: github.com/linux-genz/linux

 LLaMaS github: github.com/linux-genz/llamas

 Alpaka github: github.com/linux-genz/python3-alpaka

THANK YOU
Jim Hull, Sr. Software Engineer

IntelliProp, Inc.

2021 OFA Virtual Workshop

	Gen-Z Linux Subsystem Update
	Agenda
	Gen-Z Introduction
	Gen-Z, A New Open Interconnect Protocol
	Example Gen-Z Fabrics
	Gen-Z Management Software
	Basic Gen-Z Concepts
	Control Space Structures
	Bridge Component Block Diagram
	Gen-Z Linux Subsystem
	Why a Gen-Z Subsystem?
	Design Considerations
	Gen-Z Subsystem Block Diagram
	Gen-Z Drivers
	Data Movers
	Interrupts and Unsolicited Event Packets
	Live Demo
	Demo HW topology
	References
	THANK YOU

