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AGENDA

 Gen-Z Introduction
 Gen-Z Linux Subsystem
 Live Demo
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Gen-Z Introduction
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GEN-Z, A NEW OPEN INTERCONNECT PROTOCOL
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 Open consortium with broad industry support (70+ members)

 Family of Specifications: Core, Physical Layer, Mechanical, 
Scalable Connectors, Management

 Gen-Z is a memory semantic fabric that scales from 2 to 
256M components

 PHY-independent protocol
 Specific PHY determines latency/bandwidth/reach
 32 GT/s PCIe PHY, 25 Gbit and 50 Gbit 802.3 PHYs

 Can support an unmodified OS (e.g. firmware with ACPI 
support and Logical PCI Devices (LPDs))

 Better to modify OS, e.g., Linux, for full Gen-Z support



EXAMPLE GEN-Z FABRICS
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GEN-Z MANAGEMENT SOFTWARE
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 Gen-Z fabric spans multiple OS instances
 No OS instance can assume it “owns” all components on fabric

 Components can be subdivided into resources
 Example: a big media component split up

 A fabric manager assigns components/resources to each
OS according to a “grand plan”
 Describes components/resources using a DMTF Redfish specification 
 In-band vs out-of-band
 Programs routing tables, access controls, etc.

 Local Management Services run on each OS instance
 Consumes Redfish description for its OS instance



BASIC GEN-Z CONCEPTS
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• Basic component roles
• Requester: initiates packet
• Responder: responds to request packet and sends 

acknowledgement (if specified)
• Switch: routes packets from ingress interface to one or more 

egress interfaces

• Components have a 28-bit global component ID (GCID) 
assigned by management software

• Optional 16-bit subnet ID (SID) plus 12-bit component ID (CID)

• Components have separate control and data space
• Up to 2^52 bytes of control space for management
• Up to 2^64 bytes of data space for component specific 

functionality

• Packets are unordered by default (big difference from PCIe)
• Software-managed coherence
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CONTROL SPACE STRUCTURES
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 Conceptually similar to PCIe 
config space, but more 
elaborate

 Core Structure always at 
Control Space address 0

 Follow pointers to find other 
Structures and Tables

 These structures exist 
independent of in-band vs. 
out-of-band management
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BRIDGE COMPONENT BLOCK DIAGRAM
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Gen-Z Linux Subsystem
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WHY A GEN-Z SUBSYSTEM?
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 Enable native device drivers, exposing the full capabilities of Gen-Z

• Enables access to Gen-Z advanced features

• Sharing of fabric resources across Linux instances

• Common support code not duplicated in every bridge driver 

 Enable user space fabric managers and local management 

services

• Both in-band and out-of-band fabric managers

 Interrupts
 Atomics
 R-Key Update Packets
 Buffer Requests
 Pattern Requests
 Multi-Op Requests
 Precision Time
 Lightweight Notification
 Wake Thread
 Packet Encapsulation
 Transparent Routers
 Strong Ordering 

Domains

Gen-Z Advanced Features



DESIGN CONSIDERATIONS
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 Be like PCI, USB and other existing buses when we can

 Policy in user space and mechanism in the kernel

 Use existing kernel services

 Deal with “almost everything is optional in Gen-Z”



GEN-Z SUBSYSTEM BLOCK DIAGRAM
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GEN-Z DRIVERS

 Bridge driver
• Is discovered by host bus “native” discovery method (e.g., PCIe, ACPI)
• Registers with the Gen-Z subsystem
• Implements a set of APIs to allow subsystem to read/write/mmap control & data space

 Gen-Z device driver
• Modeled after PCI’s interfaces except driver matching is by UUID rather than vendor/device ID 

 Special “generic” Gen-Z device drivers
• genz-blk

• Makes a region of Gen-Z data space visible to host as a DAX-enabled block device
• genz-mem

• Makes a region of Gen-Z data space visible to host as system memory
• genz-enic

• Creates an emulated Ethernet network on the Gen-Z fabric
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DATA MOVERS
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 Kernel drivers like a block or eNIC driver would benefit from a generic data mover API
● Data mover queues can be assigned to other Gen-Z drivers
● Drivers can use a data mover to generate special Gen-Z packet types like atomics, write message, buffer and 

pattern requests
● Allows bridge HW vendors to innovate

 RDMA drivers want to expose the native data mover hardware directly to user space
● A generic Gen-Z subsystem kernel data mover API is irrelevant
● Userspace libraries like libfabric can hide HW differences from apps
● Is a libfabric provider per HW vendor reasonable, or does there need to be some HW standardization?



INTERRUPTS AND UNSOLICITED EVENT PACKETS

 Not like PCI’s architected MSI/MSI-X interrupts
 Gen-Z fabric interrupt sources:

• Gen-Z interrupt packets from components
• UEPs

 Unsolicited Event Packets (UEP) signal fabric state changes like 
• Link-up/down 
• Hot add/remove of component 
• Errors

 UEPs become interrupts from the targeted bridge component
• Bridge driver forwards UEP to subsystem
• Subsystem forwards to zephyr or llamas in userspace

16



Live Demo
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DEMO HW TOPOLOGY
 Two components directly connected

• Gen-Z Bridge (codename Orthus)
• Gen-Z Memory Module (ZMM)
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 Gen-Z Consortium for specifications: genzconsortium.org

 Gen-Z Linux Subsystem: github.com/linux-genz/linux

 LLaMaS github: github.com/linux-genz/llamas

 Alpaka github: github.com/linux-genz/python3-alpaka
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