
HOW TO EFFICIENTLY PROVIDE SOFTWARE-DEFINED
STORAGE USING SMARTNICS

Jonas Pfefferle, Nikolas Ioannou, Jose Castanos, Bernard Metzler

2021 OFA Virtual Workshop

Notes: IBM is a trademark of International Business Machines Corporation, registered in many jurisdictions world-wide.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium,
and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Other products and service names might be trademarks of IBM or other companies.

IBM Research

MOTIVATION

 SmartNICs are the state-of-the-art solution to provide network and storage virtualization in
cloud environments
 Leading cloud providers use custom SmartNIC designs like AWS Nitro or Azure SmartNIC
 SmartNICs provide isolation, security and increased performance

=> more energy and cost efficient
 Recently a new set of commodity SmartNIC products have become available

For example: NVIDIA BlueField, Broadcom Stingray or Pensando DSC
 Include broad set of storage and network virtualization options

• Overlay networks e.g. VXLAN
• Embedded switch
• NVMe emulation
• Virtio-queue support (block and network)
• Encryption
• Packet filters / deep packet inspection
 Can we use a commodity SmartNIC to provide transparent storage virtualization with Ceph

as the storage backend?

2 © OpenFabrics Alliance

SMARTNIC LANDSCAPE

3 © OpenFabrics Alliance

Programmability

NIC + Arm FPGANIC + GPURDMA, NFV, ToE,
NVMe-oF, iSCSI, …

P4 programmable NIC
+ Arm

“Smart”

STORAGE VIRTUALIZATION

 Goal: Transparent software-defined block storage for baremetal and virtual machines in cloud
environments

 Requirements:
• Transparent block device emulation to the host (no special storage driver on the host)
• For VM: datapath without the involvement of the hypervisor
• Control plane that allows adding and removing block devices to the host (outside of red box)
• Data encryption with key management

4 © OpenFabrics Alliance

Software-defined
Block Storage

Hypervisor

NIC

VM

Baremetal

NIC

/dev/blkdev/dev/blkdev/dev/blkdev
/dev/blkdev/dev/blkdev/dev/blkdev

Control

Perfect fit for SmartNICs?

STORAGE VIRTUALIZATION ON SMARTNIC

5 © OpenFabrics Alliance

Software-defined
Block Storage

Hypervisor

VM

Baremetal

SmartNIC

/dev/blkdev/dev/blkdev/dev/blkdev
/dev/blkdev/dev/blkdev/dev/blkdev

Control
Storage Client

Block Device
Emulation

Encryption

Control

SMARTNIC: NIC + ARM

6 © OpenFabrics Alliance

100GbE NIC

PCIe Switch

Host

Arm
core

Arm
core

Arm
core

Arm
core

Arm
core

Arm
core

Arm
core

Arm
core

RDMA NVMeoF

Encryption OvS
DRAM

BLOCK DEVICE EMULATION

7 © OpenFabrics Alliance

100GbE NIC

PCIe Switch

Arm

Block
Device

Emulation

NVMeoF

DRAM

Fully Offloaded Block Device Emulation

Host

100GbE NIC

PCIe Switch

Arm

Block
Device

Emulation

NVMeoF

DRAM

Host

Block Device Emulation with Storage Client on Arm

Control Control

Storage Client

1

2

3

CEPH

 Open-source, massively scalable,
software-defined storage system
 Builds on Reliable Autonomic

Distributed Object Store (RADOS)
 Offers object (RGW), block (RBD)

and file (CEPH FS) API in a single
unified storage cluster

8 © OpenFabrics Alliance
Source: https://de.slideshare.net/LarryCover/ceph-open-source-storage-software-optimizations-on-intel-architecture-for-cloud-workloads

EVALUATION

© OpenFabrics Alliance9

Ceph

CONFIGURATIONS

10 © OpenFabrics Alliance

Ceph

Userspace:
fio - Ceph client

Ho
st

#1 librbd

ASIC:
NVMf RDMA

(Arm)

Userspace: fio

Kernel:
NVMe blkdev

Ho
st

Sm
ar

tN
IC

Userspace:
SPDK RBD

bdevG
at

ew
ay

Ho

st

#2 GW NVMf RDMA

ASIC:
NVMf RDMA

Arm:
SPDK RBD

bdev

Userspace: fio

Kernel:
NVMe blkdev

Ho
st

Sm
ar

tN
IC

#3 Arm

RADOS

RADOS

RADOS

NVMf

Ceph

Fully offloaded

Hosts: Ceph server and clients NVIDIA BlueField 2 Arm (MBF2M516A)

 2x Intel(R) Xeon(R) CPU E5-2697 v4
 1TB DDR4
 Ubuntu 20.04 – Linux kernel 5.5
Mellanox ConnectX-5 100GbE*
 TCP Performance

• RTT: 42.59usec @16KiB
• IOPS: 1 thread: 291.4K @16KiB

8 threads: 717.1K @16KiB

• Throughput: 1 thread: 43.2Gbit/s
8 threads: 94.6Gbit/s

 8x ArmV8 A72 cores @2Ghz
 16GB DDR4
 CentOS 7.6 – Linux kernel 4.20
 Dual-port 100GbE
 TCP Performance

• RTT: 116usec @16KiB
• IOPS: 4 threads: 331.1K @16KiB

8 threads: 287.6K @16KiB
• Throughput: 1 thread: 19.1Gbit/s

4 threads: 47.8Gbit/s
8 threads: 52.8Gbit/s

SETUP AND BASELINE NETWORK PERFORMANCE

© OpenFabrics Alliance11*Server only

CEPH SETUP

 Ceph Octopus
 2 storage servers with 2 OSDs each = 4 OSDs total
 1x NVMe Samsung PM1725a per storage server (fio – blkdev)

• Read Latency: 93.71usec @16KiB
• Write Latency: 17.6usec @16KiB
• Read IOPS: 392K @16KiB
• Write IOPS: 181K @16KiB
• Read Throughput: 6314MiB/s
• Write Throughput: 3189MiB/s

 No replication: objective gateway and BlueField performance
 Default object size of 4MiB
 32 Ceph RBD images each 100GB

12 © OpenFabrics Alliance

LATENCY QD1@16KIB

13 © OpenFabrics Alliance

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

librbd GW NVMf RDMA Arm

us

Read

median 99th-percentile

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

librbd GW NVMf RDMA Arm

us

Write

median 99th-percentile

READ IOPS QD128@16KIB

14 © OpenFabrics Alliance

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

1 thread
1 volume

2 threads
1 volume

2 threads
2 volumes

4 threads
1 volume

4 threads
4 volumes

8 threads
1 volume

8 threads
8 volumes

librbd GW NVMf RDMA Arm

6.
5x

READ THROUGHPUT QD16@1MIB

15 © OpenFabrics Alliance

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

1 thread
1 volume

2 threads
1 volume

2 threads
2 volumes

4 threads
1 volume

4 threads
4 volumes

8 threads
1 volume

8 threads
8 volumes

16 threads
1 volume

16 threads
16 volumes

M
iB

/s

librbd GW NVMf RDMA Arm

SUMMARY AND OUTLOOK

 Embedded Arm on current generation commodity SmartNICs not fast enough for
complex data path operations at line speed
 Gateway solution can be feasible but at the cost of extra compute resources and

additional network hops
• Needs multipath NVMeoF for fault tolerance

 Possible solutions for librbd on SmartNIC:
• More programmable SmartNIC, e.g. FPGA solution => downside complexity of programming
• (Partial) protocol offload onto ASIC, e.g. TCP, RADOS => ASIC space is expensive which protocols to pick?
• Optimized librbd / faster Arm cores => power requirements?

16 © OpenFabrics Alliance

THANK YOU
Jonas Pfefferle, Nikolas Ioannou, Jose Castanos, Bernard Metzler

2021 OFA Virtual Workshop

IBM Research

BACKUP

© OpenFabrics Alliance18

WRITE IOPS QD128@16KIB

19 © OpenFabrics Alliance

0

20,000

40,000

60,000

80,000

100,000

120,000

1 thread
1 volume

2 threads
1 volume

2 threads
2 volumes

4 threads
1 volume

4 threads
4 volumes

8 threads
1 volume

8 threads
8 volumes

librbd GW NVMf RDMA SNAP IST

WRITE THROUGHPUT QD16@1MIB

20 © OpenFabrics Alliance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 thread
1 volume

2 threads
1 volume

2 threads
2 volumes

4 threads
1 volume

4 threads
4 volumes

8 threads
1 volume

8 threads
8 volumes

16 threads
1 volume

16 threads
16 volumes

M
iB

/s

librbd GW NVMf RDMA Arm

CEPH LIBRBD PERFORMANCE

 Evaluate client side Ceph performance => librbd
 Find bottlenecks
 Tune configuration options
 All benchmarks are single thread read IOPS QD128@16KiB
 Findings have been applied to SmartNIC evaluation above

(except those that do not apply to SmartNIC configuration like NUMA)
 Test setup:

• 2x Intel(R) Xeon(R) CPU E5-2690@2.90GHz
• 256GB RAM
• 4x Samsung 960Pro 1TB
• Mellanox ConnectX5 – 100GbE
• Ceph Octopus 40osds on 5 machines (2 osds per drive), no replication, 64 volumes each 200GB

21 © OpenFabrics Alliance

NUMATOP – RANDOM READ QD128 @16KIB

=> 45% of memory accesses are remote

with numactl:

=> 27% of memory accesses are remote

64K IOPS

90K IOPS

22 © OpenFabrics Alliance

PERF STAT - RANDOM READ QD128 @16KIB

1,860,518 operations
=> 1.34 context-switches / operation

64K IOPS

With numactl:
90K IOPS

2,740,627 operations
=> 0.72 context-switches / operation

23 © OpenFabrics Alliance

PERF – RANDOM READ QD128 @16KIB

With numactl:
90K IOPS

malloc
• librbd introduced jemalloc as default

allocator a few years back
• However neither the official Ubuntu

packages or the official Ceph packages
are compiled with jemalloc support

24 © OpenFabrics Alliance

PERF – RANDOM READ QD128 @16KIB
With numactl + jemalloc: 100K IOPSWith numactl: 90K IOPS

25 © OpenFabrics Alliance

CEPH OPTIONS

rbd_disable_zero_copy_writes
• Default true because buffer should not be changed while “owned” by librbd, i.e. if

client writes into buffer => CRC error
• Well behaved client should not touch buffer

rbd_cache
• Client local cache with default size of 32MB
• Enabled by default
• Decreased write performance on fast backends
• Introduces additional copies on read
=> Disabled in all tests

26 © OpenFabrics Alliance

PERF – RANDOM READ QD128 @16KIB
numactl + jemalloc: 100K IOPS numactl + jemalloc + rbd_disable_zero_copy_writes=false: 110K IOPS

27 © OpenFabrics Alliance

THREADS, THREADS AND MORE THREADS
rbd_op_threads
• Default 1
• Used for librbd::thread_pool
• All I/O is submitted to ioqueue associated with thread_pool
• No performance improvements seen with >1 threads

ms_async_op_threads
• Messenger threads handle all messages from librbd/librados to osds/mon/mgr
• Default of 3 threads seem to be a sweetspot for a single process

=> no significant improvement increasing to 4 or more threads
• 1 Thread: 44K IOPS
• 2 Threads: 85K IOPS
• 3 Threads: 110K IOPS
• 4 Threads: 112K IOPS

Note: New Ceph version (v16.0.0 not released) based on boost asio
librados_thread_count(2) and client_asio_thread_count(2)
=> alpha performance ~83K IOPS

28 © OpenFabrics Alliance

SPECTRE/MELTDOWN MITIGATIONS

Context switches due to socket operations
• 0.55 context switches/operation

Spectre/Meltdown mitigations makes context switches expensive (Intel mostly)
=> Disable Spectre/Meltdown mitigations
• Kernel command line = “mitigations=off”

110K IOPS => 115K IOPS

29 © OpenFabrics Alliance

RDMA

With RDMA enabled: 110K IOPS RDMA + ms_async_rdma_polling_us=0: 120K IOPS

30 © OpenFabrics Alliance

RDMA CONTINUED

RDMA + ms_async_rdma_polling_us=0
120K IOPS

Top symbols system calls
• EventCenter::process_events

uses EventEpoll driver, which uses epoll
to dispatch events
=> read, write syscalls

• Locking to protect shared datastructures
between msgr workers => futex

• RDMADispatcher /
RDMAConnectedSocketImpl uses
eventfd for dispatching
=> read/write syscalls

31 © OpenFabrics Alliance

RDMA VS TCP

CPU utilization
• RDMA expected to be lower than TCP
• 1 fio process

• 3 messenger threads
• 1 rbd operations thread

• Total CPU utilization
• RDMA: 15% of 32 logical CPUs => 4.8 CPUs
• TCP: 7% of 32 logical CPUs => 2.2 CPUs

• RDMA messenger threads are polling =>
polling threshold can be changed but hurts performance

Max machine IOPS
• RMDA: 8 processes/volumes => 265K IOPS
• TCP: 8 processes/volumes => 270K IOPS

32 © OpenFabrics Alliance

LIBRBD RDMA PROBLEMS AND SOLUTIONS

Problems
• Ceph network abstraction: streaming (socket)

• Ceph RDMA implements socket API
• Dispatching with eventfd => context switches
• Adds unnecessary copies

• General event processing via ePoll => context switches

Solutions
• Implement RDMA networking at Ceph message layer
• Reduce number of threads and dispatching
• Shared memory instead of kernel for events where possible (dynamic)

33 © OpenFabrics Alliance

SPDK AND LIBRBD

• Pinned reactor threads for event processing in SPDK
• Librbd threads inherit thread affinity of reactor threads

=> all 4 librbd threads run on same core!
• Unpinning the threads increases performance >5x

• 19.8K IOPS => 107K IOPS
• Every reactor thread creates new librados io context => 4 new

threads per image per reactor thread

34 © OpenFabrics Alliance

	How to efficiently provide software-defined storage using SmartNICs
	MOTIVATION
	SMARTNIC LANDSCAPE
	Storage Virtualization
	Storage Virtualization on smartnic
	Smartnic: nic + arm
	Block device emulation
	CEPH
	Evaluation
	CONFIGURATIONS
	Setup and baseline Network performance
	Ceph setup
	LATENCY QD1@16KIB
	READ IOPS QD128@16KiB
	Read throughput qd16@1MIb
	summary and outlook
	THANK YOU
	BACKUP
	Write iops qd128@16KiB
	write throughput qd16@1mib
	Ceph libRBD Performance
	Numatop – Random Read QD128 @16KiB
	Perf stat - Random Read QD128 @16KiB
	Perf – Random Read QD128 @16KiB
	Perf – Random Read QD128 @16KiB
	Ceph options
	Perf – Random Read QD128 @16KiB
	Threads, threads and more threads
	Spectre/Meltdown mitigations
	RDMA
	RDMA continued
	RDMA vs TCP
	Librbd RDMA Problems and Solutions
	SPDK and librbd

