

2021 OFA Virtual Workshop

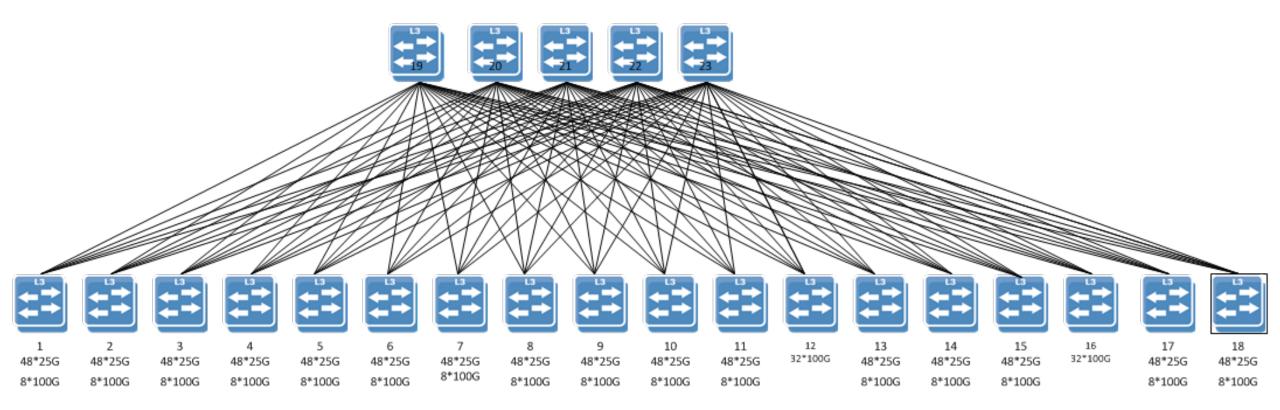
Infiniband reliability engineering - stories from a public cloud

Vladimir Chukov, Sr. Network Engineer

1&1 IONOS SE

INTRODUCTION

- Reliability Knowledge base
- Failures and mitigation
 - Physical
 - Link (+Subnet Management)
 - Network
 - Transport
 - ULP


RELIABILITY KNOWLEDGE BASE

Vendor ecosystem comparison

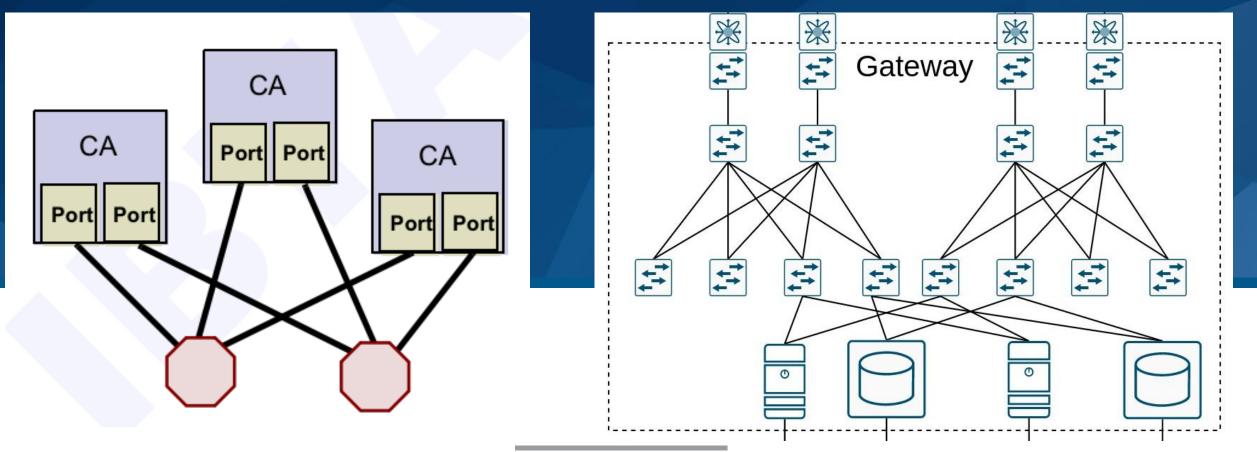
- Guides/solutions/training and certification programs
- PRM/Architecture Specifications and rare articles, mailing lists
- Cloud, Finance and some HPC fabrics do not tolerate downtime
- IETF, RIPE and smaller communities that address design and availability, from protocols to users -> on the way there as IB becomes a commodity
- Books from engineers to engineers -> we need those
- OFA presentations help

- Survivorship bias + collection of assumptions + Ethernet influence
- Layer 1
 - DACs/Optical are tested well BER rate on par/even better
 - Failure rates low
 - Errors are easy to catch with the counters
 - Chassis do not maintain signal integrity in all combinations (QDR/FDR)
 - Colocation personnel training takes time (all over the world)
 - Avoid recabling

Example of a modern Ethernet Fabric

Layer 2

- Modern fabrics are L3 based, dynamic routing
- No L2 multicast in modern DC designs
- Point to point links
- ECMP
- No Auto-Negotiation
- No chassis/dual supervisors/kernel sync
- Complexity is pushed up the stack into overlays, resulting in significant stability increase
- Handshake/keepalive-based fabric compared to centrally programmed LFTs
- Simplicity in DCN (D.Dutt)


Layer 2

- Constant growth means more variety, compared to largely static HPC fabrics
- Switch firmware could be catastrophic for the fabric.
 - Propagation of errors in the fabric
 - Managed switches with local flashing
 - Switchdev/SONiC would be great
 - Externally managed
 - Updates before the installation (scale issues)
- Stay within a generation, max 2 generations in a cluster
 - The smallest penalty is negotiation errors

- Layer 2 (cont.)
 - 70% of the incidents come from changes (Google SRE book)
 - Centralized management with SMs
 - Running a few (not too many) SMs is better
 - However, there were events where the first SM hung, 2nd took over and then it hung too
 - 0x02 -> log_notice: Reporting Urgent Notice "Link state change" from switch LID 67, GUID 0xb8599f03009cda80
 - 0x01 -> req_determine_mkey: ERR 1107: Outgoing physp is null on non-hop_0!
 - 0x01 -> log_rcv_cb_error: ERR 3111: Received MAD with error status = 0xC SubnGetResp(SMInfo), attr_mod 0x0, TID 0x2a3b536

- Layer 2 (cont.)
 - SM HA with OOB sync is there, but depends on the SMs to never get isolated
 - Other advanced SM HA features (guid2lid, SA DB sync) add more complexity, but do not guarantee availability
 - Limited CPU resources on the switches
 - MC joins/leaves
 - Heavy sweeps + ucast-cache to ensure unhealthy nodes are removed
 - Possibly stuck firmware + kdump
 - Fabric can be flooded
 - Watchdog on every server could work as a mitigation

Layer 2 (cont.)

- Way out: Dual fabric approach (IBTA Vol.1) p.1190
- Human error and linking fabrics
 - LIDs reassigned + MC groups recreated
 - SM/M_key, protection level 2 as a countermeasure
- Not a waste of resources
 - ECMP for network and storage traffic
 - Blazing fast rollouts
- Clos-(3,5) most tested, well-known and feature-rich topology
 - Rings lead to issues

- Layer 3
 - Out of scope
- Layer 4
 - Mostly out of scope
 - UD is recommended today for IPoIB (multiqueue)
 - 4096 is the max available MTU
 - RC wasn't super helpful

Layer 5 (IPoIB)

- On top of hardware-replicated MC groups
- SM will clean/recreate those groups on start or failover
- At least 40ms outage for a < 10 switches fabric
- Failures are hard to detect
 - Routing protocols (OSPF, BGP) on top of IPoIB
 - iproute2 won't help much
 - ibdump

- Layer 5 (IPoIB)
 - small test base -> more likely to run into corner cases
 - especially for IPv6
 - An example of an IPoIB bug (pkeys removed)
 - Shared fate/No redundancy for software components (mlx4/mlx5, ib_ipoib) -> mitigated with testing

2021 OFA Virtual Workshop

THANK YOU Vladimir Chukov, Sr. Network Engineer

linkedin.com/in/vchukov

ua.ionos.cor

1&1

1&1 IONOS SE