EFFICIENT MPI OFFLOADING DESIGNS ON MODERN BLUEFIELD SMART NICS

Mohammadreza Bayatpour, Nick Sarkauskas, Hari Subramoni, and Dhabaleswar K. (DK) Panda
The Ohio State University
Email:
{bayatpour.1, Sarkauskas.1}@osu.edu
{subramon, panda}@cse.ohio-state.edu
HPC applications require high-performance, low overhead non-blocking collective communications supports that provide

• Low pure communication latency
• High bandwidth
• Minimum contention for host CPU resources to progress the collective
• High overlap of computation with communication

CPU based non-blocking communication progress can lead to sub-par performance as the main application has less CPU resources for useful application-level computation

Network offload mechanisms are gaining attraction as they have the potential to completely offload the communication of MPI primitives into the network
The area of network offloading of MPI primitives is still nascent and cannot be used as a universal solution.

State-of-the-art BlueField Smart NICs bring more compute power into the network.

Can we exploit additional compute capabilities of modern BlueField Smart NICs into existing HPC middleware to extract:

- Peak pure communication performance
- Overlap of communication and computation

For dense non-blocking collective communications?
OVERVIEW OF BLUEFIELD SMART NIC/DATA PROCESSING UNIT (DPU)

- System-on-chip containing 64-bit ARMv8 A72
- BlueField DPU has two modes of operation
 - Separated Host mode
 - the ARM cores can appear on the network as any other host and the main CPU
 - Embedded CPU Function Ownership mode
 - Packet processing
OVERVIEW OF THE MVAPICH2 PROJECT

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC ‘02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

2001-2021

- Used by more than 3,150 organizations in 89 countries
- More than 1.26 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov ‘20 ranking)
 - 4th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 9th, 448,448 cores (Frontera) at TACC
 - 14th, 391,680 cores (ABCI) in Japan
 - 21st, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 9th ranked TACC Frontera system
- Empowering Top500 systems for more than 16 years
THE MVAPICH APPROACH

High Performance Parallel Programming Models

<table>
<thead>
<tr>
<th>Message Passing Interface (MPI)</th>
<th>PGAS (UPC, OpenSHMEM, CAF, UPC++)</th>
<th>Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)</th>
</tr>
</thead>
</table>

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology

(InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter)

<table>
<thead>
<tr>
<th>Transport Protocols</th>
<th>Modern Interconnect Features</th>
<th>Modern HCA Features</th>
<th>Modern IB Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>UMR</td>
<td>Burst</td>
<td>Multicast</td>
</tr>
<tr>
<td>XRC</td>
<td>ODP</td>
<td>Poll</td>
<td>SHARP</td>
</tr>
<tr>
<td>UD</td>
<td>SR-IOV</td>
<td>Tag Match</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Multi Rail</td>
<td></td>
<td>BlueField</td>
</tr>
</tbody>
</table>

* Upcoming
Non-blocking collective operations are offloaded to a set of Worker processes
BlueField is set to separated host mode
Worker processes are spawned to the ARM cores of BlueField
Once the application calls a collective, host processes prepare a set of metadata and provide it to the Worker processes
Using these metadata, worker processes can access host memory through RDMA
Worker processes progress the collective on behalf of the host processes
Once message exchanges are completed, worker processes notify the host processes about the completion of the non-blocking operation
Worker process performs RDMA Read to receive the data chunk from host main memory.

Once data is available in the ARM memory, worker process performs RDMA Write to the remote host memory.
• Example: Scatter Destination Algorithm
• Focus is on medium and large messages
• Message chunking and pipelining is utilized to reduce the overheads of staging
HPC Advisory Council High-Performance Computing Center
- Cluster has 32 compute-node with Broadwell series of Xeon dual-socket, 16-core processors operating at 2.60 GHz with 128 GB RAM
- Mellanox BlueField-2 HDR100 ConnectX-6 HCAs (100Gbps data rate) with OFED version 5.2-1.0.4
- BlueField-2 adapters are equipped with 8 ARM cores operating at 1999 MHz with 16 GB RAM
- Based on the MVAPICH2 MPI library
- OSU Micro Benchmark for nonblocking Alltoall and P3DFFT Application
- **PPN**: Number of host processes per node
- **WPN**: Number of worker processes per smart NIC
OSU MICRO BENCHMARK IALLTOALL

- **osu_ialltoall** benchmark metrics
 - **Pure communication time**
 - Latency t is measured by calling MPI_ialltoall followed by MPI_Wait
 - **Total execution time**
 - Total $T = \text{MPI}_\text{ialltoall} + \text{synthetic compute} + \text{MPI}_\text{Wait}$
 - **Overlap**
 - Benchmark creates a synthetic computation block that takes t microsecond to finish. Before starting compute, MPI_ialltoall is called and after that MPI_Wait. Overlap is calculated based on total execution time and compute time.
 - Part of the standard OSU Micro-Benchmark
OVERLAP OF COMMUNICATION AND COMPUTATION WITH OSU_IALLTOALL

Overlap (osu_ialltoall)

- MV2 BF2 HCA
- MV2-BFO 1 WPN
- MV2-BFO 2 WPN
- MV2-BFO 4 WPN

Delivers peak overlap

32 Nodes, 16 PPN

32 Nodes, 32 PPN
Delivers on-par host-based communication latency while exploiting overlap.
TOTAL EXECUTION TIME WITH OSU_IALLTOALL

Total execution time of osu_ialltoall

32 Nodes, 16 PPN

32 Nodes, 32 PPN
BlueField-2 with MVAPICH2-BFO can deliver application-level performance benefits.
All of the proposed designs and more thorough evaluations will be published in ISC High Performance 2021 conference proceedings

BluesMPI: Efficient MPI Non-blocking Alltoall offloading Designs on Modern BlueField Smart NICs

Mohammadreza Bayatpour, Nick Sarkauskas, Hari Subramoni, Jahanzeb Maqbool Hashmi, and Dhabaleswar K. (DK) Panda
Propose efficient designs for the MVAPICH2 MPI library that utilize the BlueField Smart NICs compute capability to progress MPI non-blocking collective operations

Analyze the proposed designs from multiple aspects using benchmarks and HPC kernel applications to take advantage of the state-of-the-art features of modern BlueField Smart NICs

Our proposed designs provide close to 100% overlap of communication and computation while having on-par pure communication latency for non-blocking Alltoall

The design is to reduce the total execution time of P3DFFT application up to 30% on 1,024 processes

Working on offloading designs for other non-blocking collective operations

Will be available in the future MVAPICH2 releases
THANK YOU!

bayapour.1@osu.edu, sarkauskas.1@osu.edu, subramon@cse.ohio-state.edu, panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH
MPI, PGAS and Hybrid MPI+PGAS Library

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

HiDL
High-Performance Deep Learning

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/