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HIGH-PERFORMANCE ARCHITECTURES: DRIVERS OF MODERN HPC 
CLUSTERS
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 Multi-core/many-core technologies
 Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
 Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
 Accelerators (NVIDIA GPGPUs)

Accelerators
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 200Gbps Bandwidth>

Multi-/Many-core 
Processors

SSD, NVMe-SSD, NVRAM

K - ComputerSunway TaihuLightSummit Sierra



INTRODUCTION AND MOTIVATION

 Applications exchange large amounts of data during their run-time
 Communication runtimes have the following goals in order to provide high 

performance
• Overlap computation and communication
• Maximally utilize CPU resources
• Scale-out and Scale-up efficiency
• Ideally no changes to application code for performance
• Utilize high levels of parallelism

 Some tasks can be offloaded to other computing elements, freeing up CPU resources 
for other important tasks like application-level compute
• “In-network” computing is an emerging technology that enables this. Examples : SHARP, Hardware Tag Matching

 Support for in-network computing is critical for efficient scale-out of HPC and AI 
applications in the “Exascale” era. 
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 High Performance open-source MPI Library 

 Support for multiple interconnects
• InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA

 Support for multiple platforms
• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

 Started in 2001, first open-source version demonstrated at SC ‘02
 Supports the latest MPI-3.1 standard

 http://mvapich.cse.ohio-state.edu
 Additional optimized versions for different systems/environments:

• MVAPICH2-X (Advanced MPI + PGAS), since 2011

• MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014 

• MVAPICH2-GDR with support for AMD GPUs since MVAPICH2-GDR-2.3.5
• MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

• MVAPICH2-Virt with virtualization support, since 2015

• MVAPICH2-EA with support for Energy-Awareness, since 2015

• MVAPICH2-Azure for Azure HPC IB instances, since 2019

• MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

 Tools:
• OSU MPI Micro-Benchmarks (OMB), since 2003

• Support for AMD GPUs with ROCm-aware MPI in Release Version 5.7
• OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,150 organizations in 89 countries

• More than 1.26 Million downloads from the OSU site 
directly

• Empowering many TOP500 clusters (Nov ‘20 ranking)
– 4th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 9th, 448, 448 cores (Frontera) at TACC

– 14th, 391,680 cores (ABCI) in Japan

– 21st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux 
Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 9th ranked TACC Frontera system

• Empowering Top500 systems for more than 16 years

OVERVIEW OF THE MVAPICH2 PROJECT

http://mvapich.cse.ohio-state.edu/


ARCHITECTURE OF MVAPICH2 SOFTWARE FAMILY
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High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

Point-to-point 
Primitives

Collectives 
Algorithms

Energy-
Awareness

Remote Memory 
Access
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File Systems
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Tolerance
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HARDWARE TAG MATCHING IN MPI

 Offloading the processing of MPI Tag Matching from the host processor to HCA
• Software and Hardware need to synchronized to avoid message ordering issue

 Enabling zero copy of MPI message transfers in Eager protocol
• Messages are written directly to the user's buffer without extra buffering and copies
• Applicable to expected messages, unexpected messages are handled by host
 Provides Rendezvous progress offload to HCA

• Upon finding a match, HCA initiates the RDMA Read without host involvement
• Increases the overlap of communication and computation

9 © OpenFabrics Alliance

• Mohammadreza Bayatpour, Jahanzeb Hashmi Maqbool, Sourav Chakraborty, Kaushik Kandadi Suresh, Seyedeh Mahdieh Ghazimirsaeed, Bharath Ramesh, Hari Subramoni 
and Dhabaleswar K. Panda.: Communication-Aware Hardware-Assisted MPI Overlap Engine. In International Conference on High Performance Computing - ISC High 
Performance 2020.

• Bayatpour, M., Ghazimirsaeed, S.M., Xu, S., Subramoni, H., Panda, D.K.: Design and Characterization of Infiniband Hardware Tag Matching in MPI. In proceedings of 20th 
Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing (2020) 



EAGER PROTOCOL USING HARDWARE TAG MATCHING

 Using Hardware Tag Matching, there is no extra overhead of copy operation in eager protocol
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With Hardware Tag MatchingWithout Hardware Tag Matching



RENDEZVOUS PROTOCOL USING HARDWARE TAG MATCHING

 Using Hardware Tag Matching, the overlap of communication and computation is increased in 
Rendezvous protocol

11 © OpenFabrics Alliance

With Hardware Tag MatchingWithout Hardware Tag 
Matching



IMPACT OF ZERO COPY MPI MESSAGE PASSING USING HW TAG 
MATCHING (POINT-TO-POINT) ON TACC FRONTERA
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PERFORMANCE OF MPI_ISCATTERV USING HW TAG MATCHING
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PERFORMANCE OF MPI_IALLTOALL USING HW TAG MATCHING
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OVERLAP WITH MPI_ISCATTERV USING HW TAG MATCHING
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OVERLAP WITH MPI_IALLTOALL USING HW TAG MATCHING
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• Tag matching support will be available in future releases of MVAPICH2



APPLICATION-LEVEL BENEFITS FOR TAG MATCHING

17 © OpenFabrics Alliance

• Maximizing the overlap of communication and computation leads to application-level 
improvements in total execution time compared to default MVAPICH2 on Frontera
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OFFLOADING WITH SCALABLE HIERARCHICAL AGGREGATION 
PROTOCOL (SHARP)
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 Management and execution of MPI operations in the 
network by using SHARP
 Manipulation of data while it is being transferred in the switch network

 SHARP provides an abstraction to realize the reduction 
operation
 Defines Aggregation Nodes (AN), Aggregation Tree, and Aggregation 

Groups
 AN logic is implemented as an InfiniBand Target Channel Adapter (TCA) 

integrated into the switch ASIC *
 Uses RC for communication between ANs and between AN and hosts in 

the Aggregation Tree * 

More details in the tutorial "SHARPv2: In-Network Scalable Streaming Hierarchical 
Aggregation and Reduction Protocol" by Devendar Bureddy (NVIDIA/Mellanox)

Logical SHArP Tree*
* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


HIGH-LEVEL SHARP DESIGNS IN MVAPICH2
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 Support for SHARP based offload implemented for MPI_Allreduce, MPI_Barrier and 
MPI_Reduce
 Only one process per node participates in the SHARP operation due to circumvent 

hardware limitations
 Intra-node operations happen through Shared Memory

• “Two-copy” mechanism”, cache-aligned and very efficient for smaller message sizes
 Algorithms are usually “two-level” in nature, with intra-node and inter-node steps
 MPI_Allreduce design

• First, socket-level leaders perform an intra-socket reduction amongst processes in their socket
• Second, socket-level leaders reduce values to a designated node-level leader using shared memory
• Third, use SHARP APIs to perform an allreduce over node-level leaders. This is the only inter-node step.
• For the final two steps, a broadcast of these results is done within the node (as mirror of the first and second steps)
• Algorithm for MPI_Barrier is the same – reductions are replaced with basic gather of “flag” arrays
 Support for MPI_Reduce is implemented using the allreduce SHARP primitive by 

ignoring recvbuf at non-root processes



PERFORMANCE OF MPI_BARRIER WITH SHARP
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PERFORMANCE OF MPI_ALLREDUCE WITH SHARP
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PERFORMANCE OF MPI_REDUCE WITH SHARP
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APPLICATION-LEVEL BENEFITS WITH MVAPICH2-SHARP
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• Refer to Running Collectives with Hardware based SHARP support section of MVAPICH2 user 
guide for more information

• https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3.5-userguide.html#x1-
1050006.27
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CONCLUSION AND FUTURE WORK

 Hardware based Tag Matching designs show good benefits, especially at scale
• Improved the performance of non-blocking collectives up to 42% on 1,024 nodes 
• Up to a 35% improvement for point-to-point operations

 SHARP based offload has significant benefits in latency
• Up to 5.4X reduction in latency for MPI_Reduce at 7,861 nodes over baseline
• Up to 7.1X reduction in latency for MPI_Barrier
• Up to 5.1X reduction in latency for MPI_Allreduce

 Future work
• Comprehensive evaluation with applications at large scales
• Scaling studies with larger number of processes per node
• Exploration of streaming aggregation with SHARP
• All features presented will be available in future releases of MVAPICH2

26 © OpenFabrics Alliance



THANK YOU!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

27

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
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