
DESIGNING A HIGH-PERFORMANCE MPI LIBRARY USING IN-
NETWORK COMPUTING

Mohammadreza Bayatpour, Bharath Ramesh, Kaushik Kandadi Suresh, Hari Subramoni,
Dhabaleswar K. Panda
The Ohio State University

subramon@cse.ohio-state.edu

2021 OFA Virtual Workshop

OUTLINE

 Introduction and Motivation

Overview of the MVAPICH2 project

Hardware tag matching in MPI

Offloading with Scalable Hierarchical Aggregation Protocol (SHARP)

Conclusions and Future Work

2

HIGH-PERFORMANCE ARCHITECTURES: DRIVERS OF MODERN HPC
CLUSTERS

3 © OpenFabrics Alliance

 Multi-core/many-core technologies
 Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
 Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
 Accelerators (NVIDIA GPGPUs)

Accelerators
high compute density, high

performance/watt
>1 TFlop DP on a chip

High Performance Interconnects -
InfiniBand

<1usec latency, 200Gbps Bandwidth>

Multi-/Many-core
Processors

SSD, NVMe-SSD, NVRAM

K - ComputerSunway TaihuLightSummit Sierra

INTRODUCTION AND MOTIVATION

 Applications exchange large amounts of data during their run-time
 Communication runtimes have the following goals in order to provide high

performance
• Overlap computation and communication
• Maximally utilize CPU resources
• Scale-out and Scale-up efficiency
• Ideally no changes to application code for performance
• Utilize high levels of parallelism

 Some tasks can be offloaded to other computing elements, freeing up CPU resources
for other important tasks like application-level compute
• “In-network” computing is an emerging technology that enables this. Examples : SHARP, Hardware Tag Matching

 Support for in-network computing is critical for efficient scale-out of HPC and AI
applications in the “Exascale” era.

4 © OpenFabrics Alliance

OUTLINE

 Introduction and Motivation

Overview of the MVAPICH2 project

Hardware tag matching in MPI

Offloading with Scalable Hierarchical Aggregation Protocol (SHARP)

Conclusions and Future Work

5

 High Performance open-source MPI Library

 Support for multiple interconnects
• InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA

 Support for multiple platforms
• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

 Started in 2001, first open-source version demonstrated at SC ‘02
 Supports the latest MPI-3.1 standard

 http://mvapich.cse.ohio-state.edu
 Additional optimized versions for different systems/environments:

• MVAPICH2-X (Advanced MPI + PGAS), since 2011

• MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014

• MVAPICH2-GDR with support for AMD GPUs since MVAPICH2-GDR-2.3.5
• MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

• MVAPICH2-Virt with virtualization support, since 2015

• MVAPICH2-EA with support for Energy-Awareness, since 2015

• MVAPICH2-Azure for Azure HPC IB instances, since 2019

• MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

 Tools:
• OSU MPI Micro-Benchmarks (OMB), since 2003

• Support for AMD GPUs with ROCm-aware MPI in Release Version 5.7
• OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,150 organizations in 89 countries

• More than 1.26 Million downloads from the OSU site
directly

• Empowering many TOP500 clusters (Nov ‘20 ranking)
– 4th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 9th, 448, 448 cores (Frontera) at TACC

– 14th, 391,680 cores (ABCI) in Japan

– 21st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux
Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 9th ranked TACC Frontera system

• Empowering Top500 systems for more than 16 years

OVERVIEW OF THE MVAPICH2 PROJECT

http://mvapich.cse.ohio-state.edu/

ARCHITECTURE OF MVAPICH2 SOFTWARE FAMILY

7 © OpenFabrics Alliance

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

Point-to-point
Primitives

Collectives
Algorithms

Energy-
Awareness

Remote Memory
Access

I/O and
File Systems

Fault
Tolerance

Virtualization Active MessagesJob Startup
Introspection &

Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter)

Transport Protocols Modern Interconnect Features

RC XRC UD DC UMR ODP SR-IOV
Multi
Rail

Modern HCA Features

Burst Poll

Modern IB Features

Multicast SHARP

* Upcoming

Tag Matching BlueField*

OUTLINE

 Introduction and Motivation

Overview of the MVAPICH2 project

Hardware tag matching in MPI

Offloading with Scalable Hierarchical Aggregation Protocol (SHARP)

Conclusions and Future Work

8

HARDWARE TAG MATCHING IN MPI

 Offloading the processing of MPI Tag Matching from the host processor to HCA
• Software and Hardware need to synchronized to avoid message ordering issue

 Enabling zero copy of MPI message transfers in Eager protocol
• Messages are written directly to the user's buffer without extra buffering and copies
• Applicable to expected messages, unexpected messages are handled by host
 Provides Rendezvous progress offload to HCA

• Upon finding a match, HCA initiates the RDMA Read without host involvement
• Increases the overlap of communication and computation

9 © OpenFabrics Alliance

• Mohammadreza Bayatpour, Jahanzeb Hashmi Maqbool, Sourav Chakraborty, Kaushik Kandadi Suresh, Seyedeh Mahdieh Ghazimirsaeed, Bharath Ramesh, Hari Subramoni
and Dhabaleswar K. Panda.: Communication-Aware Hardware-Assisted MPI Overlap Engine. In International Conference on High Performance Computing - ISC High
Performance 2020.

• Bayatpour, M., Ghazimirsaeed, S.M., Xu, S., Subramoni, H., Panda, D.K.: Design and Characterization of Infiniband Hardware Tag Matching in MPI. In proceedings of 20th
Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing (2020)

EAGER PROTOCOL USING HARDWARE TAG MATCHING

 Using Hardware Tag Matching, there is no extra overhead of copy operation in eager protocol

10 © OpenFabrics Alliance

With Hardware Tag MatchingWithout Hardware Tag Matching

RENDEZVOUS PROTOCOL USING HARDWARE TAG MATCHING

 Using Hardware Tag Matching, the overlap of communication and computation is increased in
Rendezvous protocol

11 © OpenFabrics Alliance

With Hardware Tag MatchingWithout Hardware Tag
Matching

IMPACT OF ZERO COPY MPI MESSAGE PASSING USING HW TAG
MATCHING (POINT-TO-POINT) ON TACC FRONTERA

12 © OpenFabrics Alliance

0

100

200

300

400

32K 64K 128K 256K 512K 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (byte)

Rendezvous
osu_latency

MVAPICH2 MVAPICH2+HW-TM

0

2

4

6

8

0 2 8 32 128 512 2K 8K

La
te

nc
y

(u
s)

Message Size (byte)

Eager
osu_latency

MVAPICH2 MVAPICH2+HW-TM

Removal of intermediate buffering/copies can lead up to 35% performance improvement
in latency of medium messages on TACC Frontera

35%

PERFORMANCE OF MPI_ISCATTERV USING HW TAG MATCHING

13 © OpenFabrics Alliance

0

20000

40000

60000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

256 Nodes

MVAPICH2 MVAPICH2+HW-TM

1.7 X

0

50000

100000

150000

200000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

1024 Nodes

0

10000

20000

30000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

128 Nodes

MVAPICH2 MVAPICH2+HW-TM

1.8 X

0

20000

40000

60000

80000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

512 Nodes
1.8 X

1.8 X

• Up to 1.8x Performance Improvement, Sustained benefits as system size increases

PERFORMANCE OF MPI_IALLTOALL USING HW TAG MATCHING

14 © OpenFabrics Alliance

0

1000

2000

3000

4000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

16 Nodes

MVAPICH2 MVAPICH2+HW-TM

1.7 X

0
2000
4000
6000
8000

10000
12000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

64 Nodes

0
500

1000
1500
2000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

8 Nodes

MVAPICH2 MVAPICH2+HW-TM

1.6 X

0

2000

4000

6000

8000

16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (byte)

32 Nodes

1.8 X
1.5 X

• Up to 1.8x Performance Improvement, Sustained benefits as system size increases

OVERLAP WITH MPI_ISCATTERV USING HW TAG MATCHING

15 © OpenFabrics Alliance

0

50

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

256 Nodes

MVAPICH2 MVAPICH2+HW-TM

0

20

40

60

80

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

1024 Nodes

0

50

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

128 Nodes

MVAPICH2 MVAPICH2+HW-TM

0

20

40

60

80

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

512 Nodes

• Maximizing the overlap of communication and computation, Sustained benefits as system
size increases

OVERLAP WITH MPI_IALLTOALL USING HW TAG MATCHING

16 © OpenFabrics Alliance

0

50

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

16 Nodes

MVAPICH2 MVAPICH2+HW-TM

0

20

40

60

80

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

64 Nodes

0

50

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

8 Nodes

MVAPICH2 MVAPICH2+HW-TM

0

20

40

60

80

100

16K 32K 64K 128K 256K 512K 1M

O
ve

rla
p

%

Message Size (byte)

32 Nodes

• Maximizing the overlap of communication and computation, Sustained benefits as system
size increases

• Tag matching support will be available in future releases of MVAPICH2

APPLICATION-LEVEL BENEFITS FOR TAG MATCHING

17 © OpenFabrics Alliance

• Maximizing the overlap of communication and computation leads to application-level
improvements in total execution time compared to default MVAPICH2 on Frontera

1

2

4

8

16

32

64

3Dstencil P3DFFT LAMMPS Nekbone

%
 Im

pr
ov

em
en

t

OUTLINE

 Introduction and Motivation

Overview of the MVAPICH2 project

Hardware tag matching in MPI

Offloading with Scalable Hierarchical Aggregation Protocol (SHARP)

Conclusions and Future Work

18

OFFLOADING WITH SCALABLE HIERARCHICAL AGGREGATION
PROTOCOL (SHARP)

19 © OpenFabrics Alliance

 Management and execution of MPI operations in the
network by using SHARP
 Manipulation of data while it is being transferred in the switch network

 SHARP provides an abstraction to realize the reduction
operation
 Defines Aggregation Nodes (AN), Aggregation Tree, and Aggregation

Groups
 AN logic is implemented as an InfiniBand Target Channel Adapter (TCA)

integrated into the switch ASIC *
 Uses RC for communication between ANs and between AN and hosts in

the Aggregation Tree *

More details in the tutorial "SHARPv2: In-Network Scalable Streaming Hierarchical
Aggregation and Reduction Protocol" by Devendar Bureddy (NVIDIA/Mellanox)

Logical SHArP Tree*
* Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

HIGH-LEVEL SHARP DESIGNS IN MVAPICH2

20 © OpenFabrics Alliance

 Support for SHARP based offload implemented for MPI_Allreduce, MPI_Barrier and
MPI_Reduce
 Only one process per node participates in the SHARP operation due to circumvent

hardware limitations
 Intra-node operations happen through Shared Memory

• “Two-copy” mechanism”, cache-aligned and very efficient for smaller message sizes
 Algorithms are usually “two-level” in nature, with intra-node and inter-node steps
 MPI_Allreduce design

• First, socket-level leaders perform an intra-socket reduction amongst processes in their socket
• Second, socket-level leaders reduce values to a designated node-level leader using shared memory
• Third, use SHARP APIs to perform an allreduce over node-level leaders. This is the only inter-node step.
• For the final two steps, a broadcast of these results is done within the node (as mirror of the first and second steps)
• Algorithm for MPI_Barrier is the same – reductions are replaced with basic gather of “flag” arrays
 Support for MPI_Reduce is implemented using the allreduce SHARP primitive by

ignoring recvbuf at non-root processes

PERFORMANCE OF MPI_BARRIER WITH SHARP

21 © OpenFabrics Alliance

0

50

100

150

200

250

La
te

nc
y

(u
s)

Number of nodes

MVAPICH2-X

MVAPICH2-X-SHARP 9X

M
PI

_B
ar

rie
r 1ppn

B. Ramesh , K. Suresh , N. Sarkauskas , M. Bayatpour , J. Hashmi , H. Subramoni , and D. K. Panda, Scalable MPI
Collectives using SHARP: Large Scale Performance Evaluation on the TACC Frontera System, ExaMPI2020 - Workshop
on Exascale MPI 2020, Nov 2020.

0

10

20

30

40

50

60

4 8 16 32 64 128 256 512 1024

La
te

nc
y

(u
s)

Number of nodes

MVAPICH2-X

MVAPICH2-X-SHARP

16ppn

3.5X

• Near flat scaling with SHARP
• Up to 9X for 1ppn at full system scale and 3.5X for 16ppn over default MVAPICH2-X

PERFORMANCE OF MPI_ALLREDUCE WITH SHARP

22 © OpenFabrics Alliance

0

20

40

60

80

100

120

8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

Message size

MVAPICH2-X

MVAPICH2-X-SHARP

5X

0

20

40

60

80

100

120

La
te

nc
y

(u
s)

Number of nodes

MVAPICH2-X

MVAPICH2-X-SHARP 4.9X

M
PI

_B
ar

rie
r

M
PI

_A
llr

ed
uu

ce

(P
PN

 =
 1

, N
od

es
 =

 7
86

1)
M

PI
_A

llr
ed

uc
e

PP
N

 =
 1

, S
iz

e
=

 1
6

by
te

s

0

50

100

150

8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

Message size

MVAPICH2-X

MVAPICH2-X-SHARP

7.1X

M
PI

_A
llr

ed
uu

ce

(P
PN

 =
 1

6,
 N

od
es

 =
 7

86
1)

0

10

20

30

40

4 8 16 32 64 128 256 512 1024

La
te

nc
y

(u
s)

Number of nodes

MVAPICH2-X

MVAPICH2-X-SHARP 2.5X

M
PI

_A
llr

ed
uc

e

PP
N

 =
 1

6,
 S

iz
e

=
 1

6
by

te
s

• Near flat scaling with SHARP for varying message sizes and node counts

PERFORMANCE OF MPI_REDUCE WITH SHARP

23 © OpenFabrics Alliance

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

Message size

MVAPICH2-X

MVAPICH2-X-SHARP

6.4X

0

50

100

150

La
te

nc
y

(u
s)

Number of nodes

MVAPICH2-X

MVAPICH2-X-SHARP 5.4X

M
PI

_B
ar

rie
r

0

10

20

30

40

50

8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

Message size

MVAPICH2-X

MVAPICH2-X-SHARP 2.2X

0

10

20

30

40

4 8 16 32 64 128 256 512 1024

La
te

nc
y

(u
s)

Number of nodes

MVAPICH2-X

MVAPICH2-X-SHARP 2.6X

• Near flat scaling with SHARP for varying message sizes and node counts

M
PI

_R
ed

uc
e

(P
PN

 =
 1

, N
od

es
 =

 7
86

1)
M

PI
_

Re
du

ce

PP
N

 =
 1

, S
iz

e
=

 1
6

by
te

s

M
PI

_
Re

du
ce

(P
PN

 =
 1

6,
 N

od
es

 =
 7

86
1)

M
PI

_
Re

du
ce

PP
N

 =
 1

6,
 S

iz
e

=
 1

6
by

te
s

APPLICATION-LEVEL BENEFITS WITH MVAPICH2-SHARP

24 © OpenFabrics Alliance

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

(4,28) (8,28) (16,28)

La
te

nc
y

(s
ec

on
ds

)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHARP

Avg DDOT Allreduce time of HPCG

• Refer to Running Collectives with Hardware based SHARP support section of MVAPICH2 user
guide for more information

• https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3.5-userguide.html#x1-
1050006.27

12%

https://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3.5-userguide.html#x1-1050006.27

OUTLINE

 Introduction and Motivation

Overview of the MVAPICH2 project

Hardware tag matching in MPI

Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)

Conclusions and Future Work

25

CONCLUSION AND FUTURE WORK

 Hardware based Tag Matching designs show good benefits, especially at scale
• Improved the performance of non-blocking collectives up to 42% on 1,024 nodes
• Up to a 35% improvement for point-to-point operations

 SHARP based offload has significant benefits in latency
• Up to 5.4X reduction in latency for MPI_Reduce at 7,861 nodes over baseline
• Up to 7.1X reduction in latency for MPI_Barrier
• Up to 5.1X reduction in latency for MPI_Allreduce

 Future work
• Comprehensive evaluation with applications at large scales
• Scaling studies with larger number of processes per node
• Exploration of streaming aggregation with SHARP
• All features presented will be available in future releases of MVAPICH2

26 © OpenFabrics Alliance

THANK YOU!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

27

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/

	Designing a High-performance MPI library using In-Network Computing
	Outline
	High-Performance Architectures: Drivers of Modern HPC Clusters
	INTRODUCTION AND MOTIVATION
	Outline
	Overview of the mvapich2 project
	Architecture of MVAPICH2 Software Family
	Outline
	Hardware Tag Matching in MPI
	Eager Protocol using Hardware Tag Matching
	Rendezvous Protocol using Hardware Tag matching
	Impact of Zero Copy MPI Message Passing using HW Tag Matching (Point-to-point) ON TACC FRONTERA
	Performance of MPI_Iscatterv using HW Tag Matching
	Performance of MPI_IALLTOALL using HW Tag Matching
	OVERLAP WITH MPI_Iscatterv using HW Tag Matching
	OVERLAP WITH MPI_IALLTOALL using HW Tag Matching
	APPLICATION-LEVEL BENEFITS FOR TAG MATCHING
	Outline
	Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)
	HIGH-LEVEL SHARP DESIGNS IN MVAPICH2
	Performance of MPI_BARRIER with SHARP
	Performance of MPI_Allreduce with SHARP
	Performance of MPI_reduce with SHARP
	APPLICATION-LEVEL BENEFITS WITH MVAPICH2-SHARP
	Outline
	CONCLUSION AND FUTURE WORK
	Thank You!

