WHAT IS PSM3?

- **PSM3 is a new libfabric provider**
 - Leverages concepts and code from Intel® Omni-Path Architecture (OPA)
 - Mature and Feature rich

- **PSM3 is designed for RoCE**
 - Optimizes performance and scalability
 - Uses standard RoCE protocols and APIs

- **PSM3 is available upstream now**
 - Integrated into libfabric
 - Out of Tree code for older distros available on github
HPC/AI COMMS ARCHITECTURE WITH PSM3

3rd generation Performance Scaled Messaging (PSM3)
- Evolution of PSM (TrueScale) & PSM2 (OPA)
- Enhanced for Ethernet and RoCE v2

Compatible with existing MPI applications
- No code changes necessary

Leverages the OpenFabrics Alliance*
- Standards based software

Provides communications for OneAPI
- Open common environ for CPU/GPU/Accel
THE QP AND MEMORY CHALLENGE AT SCALE

- RC QP WQE + Buffer + QP State excessive at >100 Nodes
 - 10GB-100GB per server @ 100 nodes

- Driving Factors
 - Per RC QP WQE and recv buffer space
 - High core count servers with 1 MPI rank per core
 - quadratic component in memory footprint

- PSM3 Solution
 - UD based eager and control protocols
 - per process UD QP WQE and recv buffer
 - linear component in memory footprint
 - reduced per connection state
 - still a quadratic component, much smaller coefficient
 - Shared Node to Node RDMA QPs
 - linear QP scaling with RDMA for rendezvous

1 MPI rank per core.
~20KB state (WQE+Buffer+QP state) per RC QP CLX-AP socket w/56 cores (112 with HT)
QP MODEL AND RENDEZVOUS MODULE

- Scalable latency benefits of UD
- Use RDMA for Rendezvous
- Keep memory footprint in line
 - $O(nodes+ppn)$ vs $O(nodes*ppn^2)$ memory and QP scaling
 - Keeps QP caches hot @ scale
- Node-Node shared RC QPs
 - Shared across processes in job
 - multi-QP striping option (default 4)
- MR caching
- Automatic QP Recovery
 - Restores disrupted connections
- Leverages concepts from OPA
BASICS OF DATA MOVEMENT STRATEGIES

Eager Transfer Strategy

1. **MPI_Send**
2. **Eager Packets**
3. **MPI_Send complete and user buffer is free to reuse.**
4. **Ack**
5. **Copy out from bounce buffer(s) to user buffer**
6. **MPI_Recv**
7. **Land data in bounce buffer(s)**
8. **Tag matching**
9. **MPI_Recv complete**
10. **MPI_Send complete and user buffer is free to reuse.**

Rendezvous Transfer Strategy

1. **MPI_Send**
2. **RTS**
3. **Register destination buffer for RDMA**
4. **Initiate RDMA transfers**
5. **CTS**
6. **RDMA data transfer**
7. **RC QP Acks**
8. **Get RDMA completion**
9. **MPI_Send complete and user buffer is free to reuse.**
10. **MPI_Recv**
11. **MPI_Recv complete**

PSM3 ADVANCED CAPABILITIES

- Multi-Rail, especially for AI
 - 1 NIC/proc
 - Multi-NIC/proc single plane
 - Multi-NIC/proc multi-plane
- Multi-Endpoint
- Tunable strategies
 - eager/rendezvous, load balancing, etc
- Resilient to fabric disruptions
- Dispersive routing
- Independent progress option
- Scalable tag matching algorithms
- Credit based flow control
- Receiver side Rendezvous pacing
- Multi-CTS Rendezvous pipelining
 - Striping of large messages (rails and/or QPs)
- PSM3_RDMA modes
 - Mode 0 – UD QP only
 - Most scalable, lowest memory footprint
 - Mode 1 – RV shared RC QP for Rendezvous RDMA
 - >64,000 bytes by default
 - Next most scalable, Best BW
 - Mode 2 – User Space RC QP for Rendezvous RDMA
 - Slightly less latency for large messages (~5% less)
 - Higher memory footprint
 - Mode 3 – User Space RC QP for Eager and Rendezvous
 - Control on UD
 - Least latency, least scalable, highest memory footprint
- Multiple Connections load balancing
 - RV (Mode 1) – multiple QPs per remote endpoint
 - QP_PER_NIC – multiple UD & RC QP endpoints per NIC
- MR Caching
 - For modes 1-3, kernel MR w/ MMU notifier hooks

Mature Features and Optimizations Brought Forward from Omni-Path

© OpenFabrics Alliance
PSM3 USER SPACE OFI PROVIDER ARCHITECTURE

Exposed API
- EndPt & Connect Mgt
- MQ
- AM
- Info Query

OFI Interface
- logging
- data types
- Stats Monitor
- Timers

Major Functions
- EndPt & Connect Mgt
- MQ
- AM
- Info Query

Messaging Paths
- NIC (ips)
- shm
- self

Wire Protocols
- Ptl-Tiny
- Ptl-Eager
- Ptl-Rndv

Rendezvous
- RDMA (ExpTid)
- Long Data

HW Interfaces
- QP Handling
- MR Mgt

Lower Layers
- OFA Verbs
- rv API
Rendezvous module
design overview

RDMA Device

Job-Device
job_key, Verbs PD

MR Cache

Connection
remote address

Single Connection
RC QP, CQs, IB CM id

IB CM Listener

User file open of rv
0..ppn

Event Ring Buffer

User mmap of Ring Buffer

Cached MR
addr, len, access local Verbs MR
0..n

Pending Write
RV user_index
RDMA Write details
0..n

0..ppn

0..n

0..nodes

0..nodes

1..16

1..jobs

0..jobs

0..n

0..n

0..n

0..nodes

0..n

0..n

0..n

0..jobs
UPSTREAM REPOS

- **https://ofiwg.github.io/libfabric** - Includes PSM3 OFI (libfabric) provider
 - Code fully in libfabric 1.12.0
 - https://github.com/intel/eth-psm3-fi - out of tree avail now
 - runs with pre-existing stock libfabric, including RHEL7.9-8.3
 - OOT build mechanism co-designed with libfabric maintainer

- **http://kernel.org** – rv kernel driver – scalably enables zero-copy
 - Community engagement in progress
 - https://github.com/intel/iefs-kernel-updates – out of tree avail now
 - runs with pre-existing in-distro OFA, including RHEL7.9-8.3

 - Avail now

- **https://github.com/intel/eth-mpi-apps** - 3rd party benchmarks, for ref
 - Avail now
PSM3 is a new libfabric provider
 • Leverages concepts and code from Intel® Omni-Path Architecture
 • Uses an optional kernel module to optimize rendezvous RDMA transfers and scalability
 • Mature and Feature rich

PSM3 is designed for RoCE
 • Optimizes performance and scalability
 • Uses standard RoCE protocols and APIs

PSM3 is available upstream now
 • Integrated into libfabric 1.12.0
 • Out of Tree code for older distros available on github
THANK YOU
Todd Rimmer, Director Software Architecture
Intel Corp