MPI Library Performance on AWS Arm-based HPC Cloud with Elastic Fabric Adapter

Shulei Xu, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. (DK) Panda
The Ohio State University
panda@cse.ohio-state.edu
OUTLINE

• Introduction
• MPI Optimization
• Performance Evaluation
 • Micro-benchmark level Performance
 • Application level Performance
• Conclusion
AMAZON ELASTIC FABRIC ADAPTER (EFA)

- Enhanced version of Elastic Network Adapter (ENA)
- Allows OS bypass, up to 100 Gbps bandwidth
- Network aware multi-path routing
- Exposed through libibverbs and libfabric interfaces
- Introduces new Queue-Pair (QP) type
 - Scalable Reliable Datagram (SRD)
 - Also supports Unreliable Datagram (UD)
 - No support for Reliable Connected (RC)

Deep Dive on OpenMPI and Elastic Fabric Adapter (EFA) - AWS Online Tech Talks, Linda Hedges
SCALABLE RELIABLE DATAGRAMS (SRD): FEATURES & LIMITATIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>UD</th>
<th>SRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send/Recv</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Send w/ Immediate</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>RDMA</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Read/Write/Atomic</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Scatter Gather Lists</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Shared Receive Queue</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Reliable Delivery</td>
<td>✖</td>
<td>✔</td>
</tr>
<tr>
<td>Ordering</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Inline Sends</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Global Routing Header</td>
<td>✔</td>
<td>✖</td>
</tr>
<tr>
<td>Max Message Size</td>
<td>4KB</td>
<td>8KB</td>
</tr>
</tbody>
</table>

- Similar to IB Reliable Datagram
 - No limit on number of outstanding messages per context
- Out of order delivery
 - No head-of-line blocking
 - Bad fit for MPI, can suit other workloads
- Packet spraying over multiple ECMP paths
 - No hotspots
 - Fast and transparent recovery from network failures
- Congestion control designed for large scale
 - Minimize jitter and tail latency

Amazon Elastic Fabric Adapter: Anatomy, Capabilities, and the Road Ahead, Raghu Raja, OpenFabrics Workshop 2019
RECENT UPDATES IN AWS EC2 INSTANCES FOR HPC WORKLOADS

- **Various hardware selection**
 - Support both x86 (Intel/AMD) & Arm based CPU types
 - Support multiple hardware configuration choices including vCPUs count, storage and network bandwidth

- **Recent supported Arm-based HPC instances**
 - Custom-built by AWS using 64-bit Arm Neoverse cores to enable the best price performance for workloads running in Amazon EC2
 - Support up to 100 Gbps networking bandwidth, 38 Gbps Elastic Block Store (EBS) bandwidth

- **Quickly deploy HPC environments with AWS Parallelcluster**
 - Support multiple instance types and job schedulers like Slurm
 - Support OS type Amazon Linux2, CentOS 7, Ubuntu 18.04 and 20.04
 - Flexible cost-effective allocation, launch when need
MPI LIBRARIES ON AWS EC2 HPC INSTANCES

- Supports MPI libraries on instances with EFA support
- OpenMPI & IntelMPI are based on Libfabric API
 - Libfabric Bypass the OS kernel and can communicate directly with EFA device
- MVAPICH2-X-AWS is based directly on SRD verbs API
 - Different to Open MPI and IntelMPI, directly invokes SRD verbs API to implement MPI level communication
 - Detail design is included in this paper:
 - Designing Scalable and High-performance MPI Libraries on Amazon Elastic Fabric Adapter, S. Chakraborty, S. Xu, H. Subramoni, DK Panda, HotI 19, Aug 2019

OUTLINE

• Introduction
• **MPI Optimization**
• Performance Evaluation
 • Micro-benchmark level Performance
 • Application level Performance
• Conclusion
OVERVIEW OF THE MVAPICH2 PROJECT

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, Rockport Networks, and Slingshot
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC ‘02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC IB instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

- Used by more than 3,200 organizations in 89 countries
- More than 1.57 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov ‘21 ranking)
 - 4th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 13th, 448,448 cores (Frontera) at TACC
 - 26th, 288,288 cores (Lassen) at LLNL
 - 38th, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 13th ranked TACC Frontera system
- Empowering Top500 systems for more than 16 years
MPI OPTIMIZATION

- **Collective algorithm tuning**
 - Systematically iterate through different MVAPICH2 collective algorithms for all `number_of_nodes x ppn` combinations, and determine algorithms with best performance for each scenario.

- **XPMEM kernel module optimization**
 - User-level API for multiple processes share address space
 - Automatically detect XPMEM module in OS, and apply optimization if it is loaded.
 - Using `dlopen` to open `libxpmem` on runtime
 - Improve point-to-point & collective intra-node large message communication performance.

- **Examples of collective performance difference are shown on the right**
• Introduction
• MPI Optimization

• **Performance Evaluation**
 • Experimental Setups
 • Micro-benchmark level Performance
 • Application level Performance

• Conclusion
EXPERIMENTAL SETUP

- **Experiment System Specification**
 - Instance Type: c6gn.16xlarge
 - RAM (DDR4): 128 GB
 - Libfabric version: 1.13.2
 - Parallel cluster: 3.0.2

- **MPI libraries & benchmark Specification:**
 - MVAPICH2: Latest Mvapich2-X-AWS
 - OpenMPI: 4.1.0 (Parallelcluster built-in)
 - OSU Micro-benchmarks: 5.8
PERFORMANCE EVALUATION

- **Point-to-point communication performance**
SINGLE NODE COLLECTIVE PERFORMANCE

Allgather – 1 Node

Allreduce – 1 Node

Gather – 1 Node

Scatter – 1 Node

Latency (us)

Message Size (Bytes)

MV2X-AWS

OpenMPI

MV2X-AWS

OpenMPI

MV2X-AWS

OpenMPI

MV2X-AWS

OpenMPI

5.1x

6.1x

6.5x

5.2x

© OpenFabrics Alliance
MVAPICH2-X-AWS CROSS ARCHITECTURE COMPARISON

- Comparing basic MPI point-to-point performance on AWS Arm (c6gn.16xlarge) vs. x86 (c5n.18xlarge)
- AWS Arm system has similar point-to-point latency performance trend, there is a small gap which is due to different resource allocation
- MVAPICH2-X-AWS has higher point-to-point bandwidth in medium message sizes on Arm systems, and higher large message bandwidth with large message sizes (>= 1MB)
4 NODES COLLECTIVE PERFORMANCE

Allgather – 4 Nodes

Allreduce – 4 Nodes

Gather – 4 Nodes

Scatter – 4 Nodes

Latency (µs) vs Message Size (Bytes) for Allgather, Allreduce, Gather, and Scatter operations on 4 nodes. The graphs compare the performance of MV2X-AWS and OpenMPI.
APPLICATION PERFORMANCE

- **Application level performance comparison:**
 - WRF with strong scaling input dataset from 12km resolution case over the Continental U.S. domain
 - miniAMR using default benchmarking input mesh size

![WRF Execution Time](image1)
![miniAMR Execution Time](image2)

© OpenFabrics Alliance
Additional Information, Results, and Evaluation can be found in the paper below at APDCM workshop of IPDPS22:

OUTLINE

• Introduction
• MPI Optimization
• Performance Evaluation
 • Experimental Setups
 • Micro-benchmark level Performance
 • Application level Performance
• Conclusion & Future Plans
CONCLUSION AND FUTURE PLANS

- Arm-based Cloud Systems has become a competitive option for HPC application users with compute-intensive workloads

- Performance optimization for MPI libraries leads to significant improvements as well as traditional HPC systems with x86 CPU

- Future Plans:
 - Further performance optimization on coming Graviton Gen3 System on AWS
 - Similar performance optimization for MVAPICH2 on other HPC cloud systems
 - Performance optimization for Arm-based GPU systems on AWS or other cloud systems
THANK YOU!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH
MPI, PGAS and Hybrid MPI+PGAS Library

HiBD
High-Performance Big Data

HiDL
High-Performance Deep Learning

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/