
OFFLOADING SCATTER-GATHER VIA CUSTOM
ACCELERATORS ON A COPA FPGA NETWORK PLATFORM

Shweta Jain, Andriy Kot, Pallabi Chatterjee, Venkata Krishnan
Intel Corporation

April 26th, 2022

OUTLINE

• Motivation for Scatter/Gather
• POC on COPA FPGA
• Inline Gather Operation
• Lookaside Scatter Operation
• Gather and Scatter Results
• OFI Support
• Future Work

2 © OpenFabrics Alliance

MOTIVATION

• Improve the performance of HPC middleware used for distributed programming by
leveraging the COPA inline/lookaside accelerator capabilities

• Provide an enhanced OFI interface that exposes the acceleration and networking
capabilities to upper-layer middleware/applications

3 © OpenFabrics Alliance

COPA FRAMEWORK

4 © OpenFabrics Alliance

Provides a flexible, integrated networking and
accelerator framework with programming simplicity

• Architected from the ground-up as a scalable system
technology using FPGAs

• HW IP integrates flexible NIC and accelerator
capabilities

• SW is based entirely on open standards

• Ease of integration with commercially available
networking switches

• Uses RDMA based communication protocols

Open Fabrics Interface (OFI)*
OFI is extended to expose acceleration capabilities to

application

OFI Provider for COPA

COPA Transport + Accelerators

COPA Driver

Shim layer (Ethernet)

Host Interface
PCIe/CXL/UPI to Xeon (or) AXI to ARM on FPGA SoC

So
ft

w
ar

e

Applications/Middleware

H
ar

dw
ar

e

Ethernet MAC

© OpenFabrics Alliance5

COPA Target
Node

COPA ACCELERATOR MODELS

© OpenFabrics Alliance5

COPA Initiator
Node

Compute
Node

Inline

Lookaside

Inline accelerators perform compute on data
during transmit/receive operation (streaming
model)

Lookaside accelerators – Traditional
acceleration model. However, output
data can be directly transmitted to target
over network without requiring data
movement back/forth to host

N
et

w
or

k
po

rt

Network

N
etw

ork
port

Inline

Lookaside

Memory Storage

Memory Storage

Naturally extends to
offloading collectives,
reduction, atomics,
distributed hash
lookup etc.

© OpenFabrics Alliance6

COPA REMOTE TRIGGERED ACCELERATION

6

FPGA or
GPU

Input data
Output data

M
em

ory

CPU

COPA
FPGA

Input data
Output data

M
em

ory

COPA Remote FlowFPGA (or GPU) accelerator + NIC flows

M
em

ory

CPU

M
em

ory

NIC

No agent for orchestrating between accelerator & network (headless or FPGA becomes the
head)

INLINE GATHER

• Gather Operation
• Combines data from multiple SRC buffers into a single payload and push it to a

remote COPA node

• Implemented as an INLINE COPA accelerator block

• Performance limited by the available Network Bandwidth

COPA Initiator Node

Inline Gather Accelerator
System Memory

SRC Buffer #0

SRC Buffer #1

SRC Buffer #n

Network
Port

COPA Target Node

System Memory

DST Buffer

RX DMA Engine

PUT Command to
push Gathered
payload to target

Network
PortNetwork

INLINE GATHER CONT’D

Network
Ports

A

B

C

Addr A, len A

Addr B, len B

Addr C, len C

Addr D, len D

Batch buffer – source buffers

VA+x
1000

MAX_BATCH entries

16 bytes per entry - 64 bits addr, 16 bit length

MAX_BATCH = 256 entries

• POC is based on COPA FPGA framework
• Supported COPA Commands: PUTV, MSGV
• Outgoing PUT/MSG data is read (gathered) from multiple

local source buffers
• Limitations:

• Combined length of data “gathered” can’t exceed 9KB
• Operates on physical addresses
• Maximum achievable ~12.5GB/s (256b data path @ ~400MHz)

GATHER BENCHMARK RESULTS

• Sequence of Gather operations – Gather payload on Initiator node memory and Push to Target node
memory

• Performance – sequential and random gather
• Granularity of transfer varied from 32B to 256B (Memory BW is < 16GB/s & FPGA data path at ~12.5GB/s). PUTV

descriptor fetch followed by read of batch buffer stalls pipeline (seen when using one engine) – Having 2 engines
addresses the problem (weak ordering model)

• Random gather shows impact of DRAM pages open/close without reuse
• Design implemented on Stratix 10 FPGA card

3.9

6.5

9.5

12 12.5

2.4
4

5.4

8.3

11.8
12.5

0

5

10

32 64 128 256 512

Ba
nd

w
id

th
 (G

B/
s)

Vector transfer granularity (bytes)

Sequential vs. Random Gather Bandwidth
(varying each PUTV vector transfer granularity)

Sequential Random Limit

LOOKASIDE SCATTER

• Scatter Operation
• Distributes a single payload from remote COPA node into multiple DST buffers

• Implemented as a LOOKASIDE COPA accelerator block

• Requires an intermediate staging buffer to store the incoming payload

• Performance limited by the available Network Bandwidth and the System Memory Bandwidth

COPA Initiator Node

Lookaside Scatter
Accelerator

System Memory

DST Buffer #0
DST Buffer #1

DST Buffer # n

Network
Port

COPA Target Node

Network
Port

SRC Buffer
TX DMA Engine

GET Command to Pull
payload from Target
Node

Staging Buffer

System Memory

SRC BufferNETWORK

• POC is based on COPA FPGA framework

• Batch buffer format identical to PUTV

• The address/length of each destination endpoint is specified by the batch buffer

• Supported COPA command : GETV
• Incoming GET data is stored within Lookaside accelerator memory

• The completion of GET request triggers the Scatter operation within Lookaside accelerator based on the batch buffer
entries

• Limitations:
• Operates on physical addresses

• Individual segments should be a multiple of 32

LOOKASIDE SCATTER CONT’D

SCATTER BENCHMARK RESULTS

• Sequence of Scatter operations – Pull payload from Target node memory and do a
Scatter operation on the Initiator Node memory

• Performance
• Granularity of transfer varied from 32B to 256B
• Peak performance dependent on speed of GET operation
• Design implemented on Stratix 10 FPGA

• POC uses physical addresses
• Max. achievable ~11.6 GB/s

COMBINED GATHER/SCATTER FLOW

© OpenFabrics Alliance13

Sequence of Operations
• Perform Gather Operation on Initiator Node
• Push the Gathered payload to the Target node
• The Initiator node posts a remote trigger Scatter request to Target Node
• Target node performs Scatter Operation

OFI Software Extension

• Low-level scatter and gather operation will be incorporated into respective calls of COPA OFI
provider: fi_readv, fi_readmsg, fi_writev, fi_writemsg and fi_inject_write

• Scatter is an optional capability based on the availability of lookaside accelerator it will
adaptively turned on or off

• Additional inline acceleration added via extensions is compatible and enabled together with
scatter/gather support

FUTURE WORK

• Migration to Intel AgileX FGPA cards

• Dense and Sparse Matrix Algebra

• Shuffle Operations (High Performance Data Analytics)

BACKGROUND

© OpenFabrics Alliance16

COPA † IS THE POC PLATFORM FOR OFI EXTENSIONS
(A SOFTWARE/HARDWARE FRAMEWORK FOR DISTRIBUTED FPGA COMPUTING)

Provides an integrated networking and accelerator
framework with programming simplicity

• Supports RDMA (PUT/GET) based communication
over commodity networks.

• Accelerators invoked as part of communication.
• Familiar environment developed around open

standards (e.g. libfabric/OFI)

Customizable framework for specific deployments

• Provides a modular architecture - can add necessary
IP (accelerator) blocks and new features for a
customized solution

Open Fabrics Interface (OFI)*
OFI is extended to expose acceleration capabilities to

application

OFI Provider for COPA

COPA Transport + Accelerators

COPA Driver

Shim layer (Ethernet)

Host Interface
PCIe/CXL/UPI to Xeon (or) AXI to ARM on FPGA SoC

So
ft

w
ar

e

Applications/Middleware

H
ar

dw
ar

e

Ethernet MAC

100GigE

CO
PA

†COPA = COnfigurable network Protocol Accelerator

17

© OpenFabrics Alliance18

SmartNIC
Accelerator Domain

(target)

ACCELERATOR MODELS (INTEGRATED WITH NETWORKING)

© OpenFabrics Alliance18

SmartNIC
Accelerator Domain

Compute
Node

Inline

Lookaside

Inline accelerators perform compute on data during
transmit/receive operation (streaming model)

Lookaside accelerators – Traditional
acceleration model. However, output data can
be directly transmitted to target over network
without requiring data movement back/forth
to host

Remote Mode Inline/Lookaside accelerators
can be triggered by incoming packet. No
host/OS involvement

N
et

w
or

k
po

rt

Network

N
etw

ork
port

Inline

Lookaside

Memory Storage

Memory Storage

COPA
FPGA Node

COPA
FPGA
device

Compute
Node

…

Naturally extends to
offloading collectives,
reduction, atomics,
distributed hash
lookup etc.

SmartNIC
Accelerator

Domain
(Target)

Could hang off a
switch port
(headless) or be an
integral part of the
switch

APPROACH – USE OFI (WITH EXTENSIONS)
Extend a network API to include acceleration support to support a truly scalable model

© OpenFabrics Alliance19

libfabric

Intel® MPI
Library MPICH Open MPI

SHMEM
Sandia

SHMEM GASNet Clang
UPC

libfabric Enabled Middleware

Sockets
TCP, UDP Verbs Cisco

usNIC
Intel

OPA, PSM
Cray
GNI

Mellanox
UCX

IBM Blue
Gene

Shared
Memory

RxM,
RxD,

Others: rsockets, PMDK, Spark, ZeroMQ,
TensorFlow, MxNET, NetIO, Intel MLSL, …Charm++ Chapel

HPE
Gen-Z

Advanced application oriented semantics

Tag Matching
Scalable
memory

registration

Triggered
Operations

Multi-
Receive
buffers

Reliable Datagram Endpoints

Remote
Completion
Semantics

Streaming Endpoints

Shared
Address
Vectors

Unexpected
Message
Buffering

Network
Direct

OFI Providers
NEW

PROVIDER

Accelerators
inline/lookaside
local & remote

 Extending an accelerator API (e.g. OpenCL) to support networking is not scalable

Applications can use OFI directly.
Middleware need to be extended to use underlying accelerator support

COPA SOFTWARE STACK

© OpenFabrics Alliance20

Open Fabrics Interface (OFI)

OFI provider for COPA (libfabric)

COPA hardware library (libchw)

COPA device driver

COPA FPGA hardware

Applications / Middleware • Open Fabrics Interface (OFI) implementation
• Main application programming interface to COPA functionality
• Extended for acceleration
• All access to COPA FPGA through COPA hardware library

(libchw) for kernel bypass

• Main system programming interface to COPA FPGA hardware
(ioctl syscalls)

• Opens device and mmap’s hardware command queues and
event queues into user process address space

• Optionally hardware emulation mode - COPA functional model

• Memory map CSRs and command queues at initialization time
• Initialize E2E connection table
• Provides memory pinning and virtual-to-physical address

translation
• Not accessed on critical path - Userspace application software

interacts with hardware using mmaped command queues

HOW DO WE ACCELERATE APPLICATIONS?

© OpenFabrics Alliance21

Option 2:

Application-aware accelerator optimizations

Option 1:

Accelerate / improve
middleware interface

standards

For example:

OpenSHMEM v1.6:
• Non-blocking

collectives
• Per-PE fence

Extend middleware interfaces

For example:

• FI_ACCELERATION*
• SHMEMX interfaces

Offload custom app-specific
patterns

For example:

• Custom collective ops
• Data transformation (e.g.

compression, filtering)

* Enhancing OFI for Invoking Acceleration Capabilities on an
Integrated Networking/Accelerator Platform (COPA) (OFAWS 2020)

CURRENT VISION OF SOLUTION

Application
driven APIs

Open source
communication

framework

Hardware vendor
specific

implementation Define mechanism to pass
input/output parameters
and invoke acceleration

Extend existing
communication framework to
support acceleration functions

APIs targeting application
use of specific accelerations

Based on internal
hardware prototyping –

FPGA-based

OFI COPA PROVIDER

 Full featured OFI provider

 Only small changes needed to add
acceleration to existing OFI-enabled
middleware and applications

 Temporary until official OFI support

 Minimal OFI extensions to enable
“inline” and “lookaside” COPA
acceleration
• Extend semantics of data structures and operations

• Define new FLAGS for acceleration

 Implements a wide variety of interfaces
to support many kinds of HPC
middleware
• FI_MSG, FI_TAGGED, FI_RMA
• FI_PROGRESS_MANUAL,

FI_THREAD_COMPLETION, FI_AV_MAP
• FI_EP_RDM

© OpenFabrics Alliance23

ENABLE ACCELERATION

24 © OpenFabrics Alliance

 New FI_ACCELERATION flag informs
provider application wants inline
accelerator to be invoked during a data
movement operations

 FI_ACCELERATION flag can be set on
the endpoint object to invoke
acceleration on all endpoint data
movement operations
• fi_control() with FI_SETOPTS

 Alternatively, FI_ACCELERATION flag can be
specified for individual data movement
operations
• fi_write_msg()
• fi_read_msg()

ACCELERATOR OUTPUTS

 Output data may be provided as a result
of acceleration

 Available for endpoints bound to a
completion queue initialized with data
format
• FI_CQ_FORMAT_DATA
• FI_CQ_FORMAT_TAGGED

 FI_ACCELERATION flags, etc., are set in
the flags field
• FI_CQ_FORMAT_MSG

25 © OpenFabrics Alliance

 Normally the completion entry data field
is for remote metadata

 Extend the data field semantics for
initiator acceleration output

struct fi_cq_data_entry {
void *op_context; /* operation context */
uint64_t flags; /* completion flags */
size_t len; /* size of received data */
void *buf; /* receive data buffer */
uint64_t data; /* completion data */

};

LOOKASIDE ACCELERATION

 Local operation – no fabric
communication involved

 Complex accelerators that do not fit in
the packet pipeline (inline acceleration)

 Same mechanism as inline to invoke
lookaside acceleration
• fi_read(), fi_write(), etc.
• FI_ACCELERATION

26 © OpenFabrics Alliance

 Lookaside accelerator flags
• FI_LOOKASIDE_ACCELERATION_*

 Current restrictions
• physically contiguous memory for all inputs and

outputs

COPA SYSTEM ORGANIZATION

27 © OpenFabrics Alliance

PCIE MM BRIDGE

PCIE M
ASTER I/F

BAR0

Accelerator Block

LookAside Module

TX/RX Ctrl

CSRs/Qs

BAR2

MAC

HOST MEMORY

PCIE SLV I/F

BAR2 CSRs
EM

IF

FPGA DDR
MEMORY

ETHERNET PKT

COPA TOP

Unified Event Completer

TX DMA Controller

RX DMA Controller
Results/

Completion
Module

SRC
Address

DST
Address

Accelerator
Function

COPA Command
Generation

AVST I/FHW APP Cmd
Q

	OFFLOADING SCATTER-GATHER VIA CUSTOM ACCELERATORS ON A COPA FPGA NETWORK PLATFORM
	OUTLINE
	Motivation
	COPA Framework
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Combined gather/scatter flow
	Slide Number 14
	Slide Number 15
	BACKGROUND
	COPA † IS THE POC PLATFORM FOR OFI EXTENSIONS �(A SOFTWARE/HARDWARE FRAMEWORK FOR DISTRIBUTED FPGA COMPUTING)
	Slide Number 18
	APPROACH – USE OFI (with EXTENSIONS)
	COPA SOFTWARE STACK
	How do we accelerate applications?
	CURRENT Vision of Solution
	OFI COPA PROVIDER
	Enable acceleration
	Accelerator outputs
	Lookaside acceleration
	Copa system organization

