

#### 2022 OFA Virtual Workshop

## Exploiting RDMA Mistakes in NVMe-oF Storage Applications

**Konstantin Taranov** 

**ETH Zurich** 

**E** Hzürich



#### RDMA is a new trend in system design

|            |           | DrTM+H'18 | DSLR'18    | NAM-DB'1 | .7               |
|------------|-----------|-----------|------------|----------|------------------|
|            | FaRM'14   | Wukong'16 | HERD'14    | RAMCloud | CoRM'21          |
| Octopus'17 | FileMR'14 | FaSST'16  | RDMP-KV'20 | )        | Catfish'19       |
| XSTORE'20  |           |           |            | ccNUMA'  | 18               |
| Hermes'20  | HydraD    | B'15      |            | Grappa'  | Derecho'19<br>15 |
| A1'20      | DrTM+R'1  | 6 Crail'  | '19 Spark  | RDMA'14  | C-Hint'14        |
| Scal       | eRPC'19   | Dare'15   | Storm'19   | DaRPC'14 | DrTM'15          |
|            | TH-DPMS   | '16 Hy    | perloop'18 | APUS'17  |                  |

2 Contraction of the



A State of the sta

#### What is RDMA networking?

#### Socket-based networking





#### What is RDMA networking?

#### Socket-based networking



#### **RDMA** networking



A State of the Participation of the State of



#### Security of RDMA – NeVerMore's injection



Injection without administrative privileges

Injection into any local RDMA connection

Injection into all IB-based protocols (including RoCE)

Taranov et al.: NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications. 2022. arXiv:2202.08080



**User space** 

#### Implications of the attack

application Kernel module Kernel space

User

- A local user can manipulate any local RDMA connection
- A local user can manipulate RDMA-enabled kernel modules
- A local user can bypass security mechanisms of the OS and directly access the affected kernel module

OS

It is especially dangerous for the NVMe-oF protocol, relying on RDMA to access remote NVMe SSD



#### Non-Volatile Memory Express (NVMe)



designed for performance – lower latency, higher bandwidth, lower CPU utilization etc.



#### NVMe over Fabrics (NVMe-oF)



and the second and



**Storage disaggregation over RDMA-capable networks RDMA** OS **INFINIBAND**<sup>™</sup> TRADE ASSOCIATION ROCE





#### **Threat models**

Model TLU – The attacker is at a local node. It does not have root privileges.





#### Towards injection of NVMe-oF write



The start a



### Background: RDMA send packet format and packet processing



A State State of



## Fundamental vulnerabilities in InfiniBand-based protocols

- 1) The IBV user space library allows to create any RDMA connection with no sudo:
  - A user can manually create a QP and add to it routing, PSNs, destination QPN



• 2) The Base Transport Header does not include source QPN





#### Packet forging with no root



The stand was shown in the

A remote node



#### Packet forging with no root



A DEAL PROPERTY AND A DEAL

A remote node



#### Packet forging with no root – IPsec over RoCE is also vulnerable



A REAL PROPERTY AND A REAL

A local node

A remote node



#### **NVMe-oF protocol**



A DEAL PROPERTY OF THE OWNER



#### Takeaway for NVMe-oF

- Storage Performance Development Kit (SPDK)
- Linux Kernel modules
  - Client: nvme-rdma
  - Target: nvmet-rdma

# Implemented in user space

#### Implemented in kernel space

- Existing security mechanisms in the NVMe-oF protocol:
  - In-band security For client/target authentication at connection establishment
  - IPsec To prevent injection into the secure link

|                        | Thr              | eat Model '      | ГLU              | Thr              | eat Model        | ГRA   |                                |
|------------------------|------------------|------------------|------------------|------------------|------------------|-------|--------------------------------|
| Attack                 | None             | In-band          | IPsec            | None             | In-band          | IPsec | Effect                         |
| Spoof NVMe-oF request  | Yes              | Yes              | Yes              | Yes              | Yes              | No    | Execution of falsified request |
| Spoof NVMe-oF response | Yes              | Yes              | Yes              | Yes              | Yes              | No    | Early termination              |
| Corrupt memory         | Yes <sup>1</sup> | No    | Use of falsified data          |

#### More in the paper



|                           | Threat Model TLU |                  | Threat Model TRA |                  |                  |       |                                |
|---------------------------|------------------|------------------|------------------|------------------|------------------|-------|--------------------------------|
| Attack                    | None             | In-band          | IPsec            | None             | In-Band          | IPsec | Effect                         |
| Spoof NVMe-oF request     | Yes              | Yes              | Yes              | Yes              | Yes              | No    | Execution of falsified request |
| Spoof NVMe-oF response    | Yes              | Yes              | Yes              | Yes              | Yes              | No    | Early termination              |
| Corrupt memory            | Yes <sup>1</sup> | No    | Use of falsified data          |
| Exhaust QPNs              | Yes <sup>2</sup> | Yes <sup>2</sup> | Yes <sup>2</sup> | No               | No               | No    | Connection failure             |
| Spoof CNPs                | No <sup>3</sup>  | No <sup>3</sup>  | No <sup>3</sup>  | Yes              | Yes              | No    | Connection slowdown            |
| Spoof RDMA-CM disconnect  | Yes              | Yes              | Yes              | Yes              | Yes              | Yes   | Disconnection                  |
| Spoof invalid packet [26] | Yes              | Yes              | Yes              | Yes              | Yes              | No    | Disconnection                  |

<sup>1</sup> Linux kernel uses fast memory registrations with invalidation, which increases the complexity of the attack.

<sup>2</sup> Can be mitigated with RDMA Controller [19].

<sup>3</sup> Injection of CNPs is possible only for RoCE with administrative permissions.

A PART PART STORE STORE



| equests with no sudo         |                 |                 |                 |
|------------------------------|-----------------|-----------------|-----------------|
| equests with no sudo         |                 |                 |                 |
|                              |                 |                 |                 |
|                              |                 |                 |                 |
|                              |                 |                 |                 |
| irget                        |                 |                 |                 |
|                              |                 |                 |                 |
| -CM kernel module            |                 | _               |                 |
| _random_bytes( <b>sizeof</b> | f(uint32_t));   |                 |                 |
| 0;                           |                 |                 |                 |
| entiller                     |                 |                 |                 |
| ocal_id++);                  |                 |                 |                 |
|                              |                 | _               |                 |
|                              | <pre>rget</pre> | <pre>rget</pre> | <pre>rget</pre> |



## Mitigations for IB-based protocols – prevent injection under TLU

- Change packet format
  - Add source QPN
- Inform users to employ application-layer authentication
  - As we propose for NVMe-oF in this work [1]
- Implement secure transport
  - As we propose in sRDMA [2]
- Deploy infrastructure to detect the injection under TLU
  - As proposed in Bedrock [3]

[1] Taranov et al.: NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications. 2022. arXiv:2202.08080

[2] Taranov et al.: sRDMA - Efficient NIC-based Authentication and Encryption for Remote Direct Memory Access. Usenix ATC 2020.

[3] Jiarong Xing et al., Bedrock: Programmable Network Support for Secure RDMA Systems. Usenix Security 2022





#### Summary

- Vulnerabilities in the packet format allows spoofing RDMA packets with no root
- The injection allows to manipulate local RDMA-enabled kernel modules from the user space
- NVMe-oF security is not sufficient for insecure RDMA interconnects
- RDMA requires a secure transport



Contact information: Konstantin Taranov konstantin.taranov@inf.ethz.ch

