

2022 OFA Virtual Workshop

GRAPHCORE IPU OVER FABRIC (IPUOF)

Wei Lin Guay, Dag Moxnes, Ville Silventoinen, Lars Paul Huse and Ola Tørudbakken

AGENDA

- Introduction to Graphcore IPU
- Graphcore BOW-M2000
- IPU over Fabric (IPUoF)
 - What is IPUoF?
 - Why IPUoF?
- Heterogeneous Memory
 - RDMA memory registration (Linux reserved memory)
 - 3rd party device memory (Peer-to-Peer)
- Data flow
- Conclusion

INTRODUCTION TO GRAPHCORE IPU

ЪС

GRAPHCORE BOW M2000

4x Bow IPUs

- 1.4 PFLOP₁₆ compute
- 5,888 processor cores
- > 35,000 independent parallel threads

COMMUNICATIONS

Exchange Memory

- 3.6GB In-Processor Memory @ 260 TB/s
- 128GB Streaming Memory DRAM (up to 256GB)

- Host-Link 100GE to Poplar Server for standard data center networking
- IPU-Link 2D Torus for intra-POD64 communication
- GW-Link 2x 100Gbps Gateway-Links for inter-POD64– flexible topology

IPU OVER FABRIC

Software Architecture

IPU OVER FABRIC (IPUOF)

What is IPUoF?

IPU OVER FABRIC Why IPUoF?

• IPUoF is the data path path that provides disaggregation of IPU processing pool from the host processing pool.

• Graphcore IPU-M2000 platform consists of heterogenous memory.

- Graphcore IPU-M2000 platform consists of heterogenous memory.
 - Graphcore Streaming memory DRAM

- Graphcore IPU-M2000 platform consists of heterogenous memory.
 - Graphcore Streaming memory DRAM
 - Graphcore tile memory (SRAM)

- Graphcore IPU-M2000 platform consists of heterogenous memory.
 - Graphcore Streaming memory DRAM
 - Graphcore tile memory (SRAM)
 - IPU-M2000 Host (SoC) memory

- Graphcore IPU-M2000 platform consists of heterogenous memory.
 - Graphcore Streaming memory DRAM
 - Graphcore tile memory (SRAM)
 - IPU-M2000 Host (SoC) memory
- Challenges
 - Memory is not "just" memory, from software perspective.
 - Streaming memory is used by RNIC and IPU.
 - mmap (remap_pfn_range) is incompatible with ibv_reg_mr
 - https://www.spinics.net/lists/linuxrdma/msg70401.html

STREAMING MEMORY DATA PATH (HOST-TO-DEVICE)

- 1. Application memcpy to Local MR.
- 2. Poplar host (IPUoF-client) initiates RNIC memRd(hostMem) from Local MR.
- (remote) RNIC memWr(PL DDR) to Remote MR.
- After Host-Sync, IPU (master) memRd(PL DDR) from Remote MR.

STREAMING MEMORY DATA PATH (DEVICE-TO-HOST)

- 1. IPU memWr (PL DDR)
- 2. After Host-Sync, Poplar host initiates remote RNIC to MemRd(PL DDR).
- 3. RNIC memWr() to Local MR.
- 4. Framework/Poplar reads from Local MR (callback).

TILE MEMORY DATA PATH (PCIE P2P)

- 1. PCIe peer-to-peer (P2P) supports DMA transfer between two devices.
- Optimized data path for IPUoF host-todevice and IPUoF config/exchange access.
 - Avoid the use of bounce buffer on the IPU-M.

DATA FLOW

CONCLUSION

- What is IPUoF?
 - Software layer that operates across different Fabric Technologies.
 - Implemented with RDMA/RoCE today.
- Why IPUoF?
 - Data mover to feed and fetch data from IPU.
 - Provide disaggregation of IPU Processing resources from the Host.
- Kudos to the RDMA community that support aarch64 out-of-box and support of heterogeneous memory with no changes on the RDMA stack.

2022 OFA Virtual Workshop

THANK YOU Wei Lin, Guay