
IN-NETWORK COLLECTIVE COMMUNICATION
ACCELERATIONS

OFI COLLECTIVES
Sean Hefty

April 2022
Intel Corporation

2022 OFA Virtual Workshop

OVERVIEW

Introduction:
How collectives differ
Collective operations

Software abstraction:
Identify collective membership
Setup communication groups
Invoke collective

Other thoughts:
Ensure efficient mappings

Accelerations in switches,
NICs, platforms, FPGAs

Focus on enabling
the technology

No discussion on
effectiveness

HOW COLLECTIVES DIFFER
MULTICAST VS COLLECTIVE BROADCAST

Datagram
endpoint

Multicast
Network

Datagram
endpoint

Datagram
endpoint

Datagram
endpoint

join multicast()
multicast send()

join multicast()
recv()

recv()
join multicast()
recv()

…
…
join multicast()

Does not know who
receivers are

Recv not matched
with send

Uncoordinated
(e.g. late join)

data

Multicast

In-network support
• Packet replication
• Unreliable delivery

Limited to
1 MTU

HOW COLLECTIVES DIFFER
MULTICAST VS COLLECTIVE BROADCAST

RDM
endpoint

Collective
Network

RDM
endpoint

RDM
endpoint

RDM
endpoint

join collective()
broadcast send()

data

Collective
broadcast

In-network support
• Message replication
• Reliable delivery –

ack coalescing

Message

join collective()
broadcast recvfrom()

join collective()
broadcast recvfrom()

join collective()
broadcast recvfrom()

RDM – Reliable Datagram

Joins coordinated

Knows who
receivers are

Recv matched
with send

ack

Knows who
sender is

barrier
(global sync)

Additional in-network
support
• Data replication
• Computation – data

format aware
• Data coalescing and

distribution
Collectives not appearing on stage:
gather, scatter, reduce, reduce-scatter

all reduce

Definitions by example

data
array

Peer
0

1

5

9

Peer
1

1

5

9

Peer
2

1

5

9

Peer
0

1

5

9

Peer
1

2

6

10

Peer
2

3

7

11

Peer
0

1

2

3

Peer
1

5

6

7

Peer
2

9

10

11

all to all

Same data types and
operations as atomic APIs

Peer
0

1

5

9

Peer
1

1

5

9

Peer
2

1

5

9

Peer
0

3

15

27

Peer
1

3

15

27

Peer
2

3

15

27

sum

Peer
0

1

5

9

Peer
1

1

5

9

Peer
2

1

5

9

Peer
0

1

Peer
1

5

Peer
2

9

COLLECTIVE OPERATIONS
CONCEPTUAL: “MULTICAST ATOMICS”

all gather

broadcast

SOFTWARE ABSTRACTION
LIBFABRIC COLLECTIVE API’S

1. Identify collective membership
Select participating peers
Local operation – address vector sets

2. Setup communication groups
Coordinated join among members
Network operation (maybe) – 2 supported models

3. Invoke collective
Collective data transfer operation

Collective ExtensionExisting API

IDENTIFY COLLECTIVE MEMBERSHIP
ADDRESS VECTOR SETS

Address Vector

fi_addr_t Fabric Address

0 100:3:50

1 100:3:51

2 101:3:83

3 102:3:64

… …

e.g.: IP : Port

10.0.0.1 : 7000

10.0.0.1 : 7001

10.0.0.2 : 7000

10.0.0.3 : 7003

…

Application visible
addresses of peer

endpoints
Unicast address

used by API

Translated
addresses

AV
Represents the
peer universe

Address Vector Set

fi_addr_t

0

2

4

6

…

AV Set
Set of peers in a
collective group

fi_addr_t

Associated
collective address

AV Set operations
• Insert
• Remove
• Union
• Intersect
• Difference

map
select

Local setup to identify
members for new group

AV – Address Vector

New collective multicast group

Universe (AV) or existing group

SETUP COMMUNICATION GROUPS
JOIN COLLECTIVE

Network setup to
coordinate peersRDM

endpoint
Collective
Network

RDM
endpoint

RDM
endpoint

RDM
endpoint

RDM
endpoint

RDM
endpoint

RDM
endpoint

Collective
Network

RDM
endpoint

RDM
endpoint

RDM
endpoint

RDM
endpoint

RDM
endpoint

• OFI-managed
• Provider implements coordination in-band
• Provider reserves resources

• Application-managed
• Group was established out-of-band
• Resources already reserved

current
member

new
member

Join Models

fi_addr_t

fi_addr_t

All peers
call join

AV set members
belong to new

collective group

INVOKE COLLECTIVE
SAMPLE API FLOW

struct fi_info *hints, *info;

hints fi_allocinfo();
<format hints>
hints->caps |= FI_COLLECTIVE;

fi_getinfo(FI_VERSION(1,14), hostname, NULL, FI_SOURCE, hints, &info);

<allocate fabric resources>

struct fi_collective_attr attr = {0};
attr.op = FI_SUM;
attr.datatype = FI_FLOAT;

fi_query_collective(domain, FI_ALLREDUCE, &attr, 0);
assert(attr.datatype_attr.count >= 100 && attr.max_members >= 50)

Request support for in-
network collectives

Verify support for
collective that we need

INVOKE COLLECTIVE
SAMPLE API FLOW

struct fid_av_set *av_set;
struct fi_av_set_attr attr = {0};
attr.start_addr = 2;
attr.end_addr = 100;
attr.stride = 2;
fi_av_set(av, &attr, &av_set, NULL);

struct fid_mc *mc;
fi_join_collective(ep, FI_ADDR_UNAVAIL, av_set, 0, &mc, NULL);

struct fi_eq_entry entry;
uint32_t event;
fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);
assert(event == FI_JOIN_COMPLETE);

fi_allreduce(ep, input_array, 100, NULL, result_array, NULL,
fi_mc_addr(mc), FI_FLOAT, FI_SUM, 0, my_context);

Create AV set and
identify group members

First join
involves all peers

Creates collective
multicast group

Join completes
asynchronously

Asynchronous all-
reduce operation

OTHER THOUGHTS
ENSURE EFFICIENT MAPPINGS

Managing in-network resources
Guarantee resources are available
App may want to prioritize which collectives to accelerate
API object: collective resource tokens?

Priority
Define impact on active collectives
Preempt possible? Pause-resume or abort/cancel?
libfabric defines priority at the endpoint level
Do resource tokens act as a proxy?

OTHER THOUGHTS
ENSURE EFFICIENT MAPPINGS

Reproducibility of results
Order that data is fed into operations can produce different results
Relaxed reproducibility can reduce in-network memory
Setting: per-operation, group (AV set), resource token?

Sparse data
Avoid sending / storing null data
Define a compact, data aware SGL?

OTHER THOUGHTS
ENSURE EFFICIENT MAPPINGS

Network topology
Query collective support - local vs global?
Peer endpoints relative to switches and accelerators
Scope of the job or resource manager?

Programmable in-network accelerations
Non-collective operations
How does app specify operation and parameters?
Entity responsible for programming switch/FPGA?

THANK YOU

	In-Network collective communication accelerations�OFI Collectives
	Overview
	How collectives differ�Multicast vs collective broadcast
	How collectives differ�Multicast vs collective broadcast
	Collective Operations�Conceptual: “Multicast atomics”
	SOFTWARE abstraction�libfabric Collective API’s
	Identify collective membership�Address vector sets
	Setup communication groups�join collective
	Invoke collective�Sample API flow
	Invoke collective�Sample API flow
	Other Thoughts�Ensure efficient mappings
	Other Thoughts�Ensure efficient mappings
	Other Thoughts�Ensure efficient mappings
	THANK YOU

