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OVERVIEW

Introduction:
How collectives differ
Collective operations

Software abstraction:
Identify collective membership
Setup communication groups
Invoke collective

Other thoughts:
Ensure efficient mappings

Accelerations in switches, 
NICs, platforms, FPGAs

Focus on enabling 
the technology

No discussion on 
effectiveness



HOW COLLECTIVES DIFFER
MULTICAST VS COLLECTIVE BROADCAST
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In-network support
• Packet replication
• Unreliable delivery

Limited to 
1 MTU



HOW COLLECTIVES DIFFER
MULTICAST VS COLLECTIVE BROADCAST
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In-network support
• Message replication
• Reliable delivery –

ack coalescing
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RDM – Reliable Datagram

Joins coordinated

Knows who 
receivers are

Recv matched 
with send

ack

Knows who 
sender is



barrier
(global sync)

Additional in-network 
support
• Data replication
• Computation – data 

format aware
• Data coalescing and 

distribution
Collectives not appearing on stage:
gather, scatter, reduce, reduce-scatter

all reduce

Definitions by example
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all to all

Same data types and 
operations as atomic APIs
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COLLECTIVE OPERATIONS
CONCEPTUAL: “MULTICAST ATOMICS”

all gather

broadcast



SOFTWARE ABSTRACTION
LIBFABRIC COLLECTIVE API’S

1. Identify collective membership
Select participating peers
Local operation – address vector sets

2. Setup communication groups
Coordinated join among members
Network operation (maybe) – 2 supported models

3. Invoke collective
Collective data transfer operation



Collective ExtensionExisting API

IDENTIFY COLLECTIVE MEMBERSHIP
ADDRESS VECTOR SETS

Address Vector

fi_addr_t Fabric Address

0 100:3:50

1 100:3:51

2 101:3:83

3 102:3:64

… …

e.g.: IP : Port

10.0.0.1 : 7000

10.0.0.1 : 7001

10.0.0.2 : 7000

10.0.0.3 : 7003

…

Application visible 
addresses of peer 

endpoints
Unicast address 

used by API

Translated 
addresses

AV
Represents the 
peer universe

Address Vector Set
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AV Set
Set of peers in a 
collective group

fi_addr_t

Associated 
collective address

AV Set operations
• Insert
• Remove
• Union
• Intersect
• Difference

map
select

Local setup to identify 
members for new group

AV – Address Vector



New collective multicast group

Universe (AV) or existing group

SETUP COMMUNICATION GROUPS
JOIN COLLECTIVE

Network setup to 
coordinate peersRDM 
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• OFI-managed
• Provider implements coordination in-band
• Provider reserves resources

• Application-managed
• Group was established out-of-band
• Resources already reserved

current 
member

new 
member

Join Models

fi_addr_t

fi_addr_t

All peers 
call join

AV set members 
belong to new 

collective group



INVOKE COLLECTIVE
SAMPLE API FLOW

struct fi_info *hints, *info;

hints fi_allocinfo();
<format hints>
hints->caps |= FI_COLLECTIVE;

fi_getinfo(FI_VERSION(1,14), hostname, NULL, FI_SOURCE, hints, &info);

<allocate fabric resources>

struct fi_collective_attr attr = {0};
attr.op = FI_SUM;
attr.datatype = FI_FLOAT;

fi_query_collective(domain, FI_ALLREDUCE, &attr, 0);
assert(attr.datatype_attr.count >= 100 && attr.max_members >= 50)

Request support for in-
network collectives

Verify support for 
collective that we need



INVOKE COLLECTIVE
SAMPLE API FLOW

struct fid_av_set *av_set;
struct fi_av_set_attr attr = {0};
attr.start_addr = 2;
attr.end_addr = 100;
attr.stride = 2;
fi_av_set(av, &attr, &av_set, NULL);

struct fid_mc *mc;
fi_join_collective(ep, FI_ADDR_UNAVAIL, av_set, 0, &mc, NULL);

struct fi_eq_entry entry;
uint32_t event;
fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);
assert(event == FI_JOIN_COMPLETE);

fi_allreduce(ep, input_array, 100, NULL, result_array, NULL,
fi_mc_addr(mc), FI_FLOAT, FI_SUM, 0, my_context);

Create AV set and 
identify group members

First join 
involves all peers

Creates collective 
multicast group

Join completes 
asynchronously

Asynchronous all-
reduce operation



OTHER THOUGHTS
ENSURE EFFICIENT MAPPINGS

Managing in-network resources
Guarantee resources are available
App may want to prioritize which collectives to accelerate
API object: collective resource tokens?

Priority
Define impact on active collectives
Preempt possible?  Pause-resume or abort/cancel?
libfabric defines priority at the endpoint level
Do resource tokens act as a proxy?



OTHER THOUGHTS
ENSURE EFFICIENT MAPPINGS

Reproducibility of results
Order that data is fed into operations can produce different results
Relaxed reproducibility can reduce in-network memory
Setting: per-operation, group (AV set), resource token?

Sparse data
Avoid sending / storing null data
Define a compact, data aware SGL?



OTHER THOUGHTS
ENSURE EFFICIENT MAPPINGS

Network topology
Query collective support - local vs global?
Peer endpoints relative to switches and accelerators
Scope of the job or resource manager?

Programmable in-network accelerations
Non-collective operations
How does app specify operation and parameters?
Entity responsible for programming switch/FPGA?



THANK YOU
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