
Parallel and Distributed Systems Laboratory, UC Merced

HatRPC: Hint-Accelerated Apache Thrift RPC over RDMA
Xiaoyi Lu, Assistant Professor

Department of Computer Science and Engineering (CSE)
University of California, Merced

2022 OFA Virtual Workshop

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Overview

• Introduction
• Motivation
• HatRPC Design
• Evaluation
• Conclusion

OFAW'22 2

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Varied Communication Requirements in Apps

OFAW'22 3

• Modern datacenters and clouds have
many heterogeneous applications
running simultaneously

• Different services and functions
within the same server have
different communication
characteristics, communication
patterns, and requirements

DB server 1 DB server 2

Client

Heartbeat

Data shuffle
(throughput-centric)

Scan
(latency-centric)

Update
(latency-centric)

Batched-Update
(throughput-centric)

Database with Heterogeneous Applications

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Remote Direct Memory Access (RDMA)

• Remote Direct Memory Access
(RDMA) can bypass CPU in
transferring data across network

• Delivers excellent performance in
latency, bandwidth, throughput,
etc.

• Reduces CPU involvements

OFAW'22 4

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

RDMA Programming Is Not Easy

• 600~1000 LOC for native verbs-based hello world

• 745 LOC for UCX-based hello world

• 2335 LOC for Libfabric-based PingPong

OFAW'22 5

- ucp_hello_world.c - https://github.com/openucx/ucx/blob/master/examples/ucp_hello_world.c

- pingpong.c - https://github.com/ofiwg/libfabric/blob/main/util/pingpong.c

- ~600, RDMA-CM-based example - https://github.com/tarickb/the-geek-in-the-
corner/tree/master/01_basic-client-server

https://github.com/openucx/ucx/blob/master/examples/ucp_hello_world.c
https://github.com/ofiwg/libfabric/blob/main/util/pingpong.c
https://github.com/tarickb/the-geek-in-the-corner/tree/master/01_basic-client-server

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 6

• Several RDMA communication schemes from previous works

head
tail

Client Server
SEND

Eager-SendRecv

headtail

Client Server

head tail

SEND

READ

SEND

Read-RNDV

headtail

Client Server

SEND

WRITE

Direct-Write-Send

headtail

Client Server

SEND
WRITE

Chained-Write-Send

headtail

Client Server
head

tail

SEND

WRITE
w/ IMM

IMMIMM

SEND

IMM

Write-RNDV

Client Server

WRITE
w/ IMM

IMM

IMM

IMM

Direct-WriteIMM

Client Server

WRITE
w/ IMM

IMM
IMM

READ

READ

Pilaf

Client Server

WRITE
w/ IMM

IMM
IMM

READ

READ

FaRM

Client Server

WRITE
w/ IMM

IMM
IMM

READ

RFP (Best Case)

Varied RDMA Communication Schemes

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 7

RDMA Schemes in RPC - Latency

• Direct-WriteIMM provides the best performance in busy polling

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 8

RDMA Schemes in RPC - Throughput

• Direct-WriteIMM with event polling is suitable for small payloads
• RFP with event polling is suitable for full- and over-subscription for large payloads

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 9

• RDMA performance is high, but its productivity is low

• Can we design an approach to automatically generate efficient RDMA-
based communication substrates for data center applications?

• No one-size-fits-all RDMA scheme

• How can the proposed approach satisfy different communication
requirements on various RDMA schemes in datacenter applications?

• How can we guarantee the effectiveness and efficiency of the generated
RDMA-based communication schemes for heterogeneous applications?

Problem Statements

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Overview

• Introduction
• Motivation
• HatRPC Design
• Evaluation
• Conclusion

OFAW'22 10

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Key Ideas of HatRPC

OFAW'22 11

HatRPC

P1:
RDMA productivity
is low

P2:
No one-size-fits-all
RDMA scheme

S1:
Use RDMA enabled RPC
frameworks

S2:
Extend IDL files for
application requirements.

Hint

Thrift

Courtesy: Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu. HatRPC: Hint-Accelerated Thrift RPC over RDMA. In Proceedings of the 34th International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2021. (*Co-First Authors)

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Overview of RPC Framework – Apache Thrift

OFAW'22 12

• A communication framework that
hides platform and hardware details
for users

• Typically provide user-friendly
Interface Definition Language for
different services and applications

• Apache Thrift is a widely used RPC
framework that adopts a hierarchical
architecture and provides an IDL code
generator

Client/Server

Thrift Protocol

Transport
Wrapper

Low-Level
Transport

Language

OS

Client Forking
Server

Non-Blocking
Server

Simple
Server

Threaded
Server

Threaded
Pool Server

Binary Compact JSON Multiplexed

Buffered Framed HTTP zlib

File Memory
Buffer Pipe TCP/IP TLS Unix Domain

Socket RDMA

python ruby rustjava
lua

node.js perl php
dart erlang go

haskell
as3 c_glib C++ C# D

Windows Linux

Apache Thrift Architecture

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 13

• Extend from Thrift’s IDL syntax and allow users to insert key-value pairs as hints in IDL
files

• Adopt a hierarchical architecture to specify hints in different services or functions. Use
lateral partitioning to differentiate the client and server side

Service Echo {

Shared Hints | Server Hints | Client Hints

Func Ping() Shared Hints | Server Hints | Client Hints
}

Service Mail {
Shared Hints | Server Hints | Client Hints

Func Post() Shared Hints | Server Hints | Client Hints
Func Deliver() Shared Hints| Server Hints | Client Hints

}

Service Level Hints

Service Level Hints
Function Level Hints

Service ::= 'service' Identifier ('extends' Identifier)?

'{' HintGroup* Function* '}'

Function ::= 'oneway'? FunctionType Identifier '(' Field* ')'

Throws? ListSeparator? FunctionHint?

FunctionHint ::= '[' HintGroup* ']'

HintGroup ::= 'hint' ':' HintList ';'

| 'c_hint' ':' HintList ';'

| 's_hint' ':' HintList ';'

HintList ::= Hint ',' HintList | Hint

Hint ::= key '=' value

Proposed Hints in Thrift IDL

HatRPC IDL Abstract Syntax Structure HatRPC Hint Hierarchy

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 14

HatRPC IDL
with Hint

flex
scanner Tokens Bison parser

C++ Types &
User Hints

Program
ObjectValidation

flexHatRPC flex
rule file

HatRPC Bison
rule file Bison

TRdma
Generate 'Hint+RDMA'-based Services & Stubs

HatRPC Code

Generator

User Hints Check, Analysis and Merge

Generate Hierarchical Hint Map

• Use flex to generate lexical analyser and
Bison to generate parser for code
generation

• Check hint validity and optimize hint map
layout. Generate RDMA-based service and
stub files with hints

HatRPC Code Generation

Code Generation

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 15

• Implement various RDMA
communication schemes, different
polling mechanisms and memory
management strategies in HatRPC’s
RDMA engine

• TRdma layer is the counterpart for
Thrift’s TSocket to bridge RDMA
engine with Thrift

 Hint2Conf
 Translator

TServer
Rdma TRdma TRdma

Transport
TRdma

EndPoint

HatRPC CoresetHints()

HatRPC RDMA Engine

Performance
Goal Hint

Concurrency
Hint

Payload
Size Hint Other Hints

 Polling
 Mechanism Busy Polling Event Polling Adaptive Polling

 RDMA
 Protocols

Eager-
SendRecv

Write-
RNDV

Direct-
Write-Send

Direct-
WriteImm RFP

 Memory
 Mgmt

Pinned RDMA Buffer
Scheme per Connection

Shared RDMA Buffer
Scheme over Connections

Generate 'Hint+RDMA'-based Services & Stubs

HatRPC Architecture

HatRPC Architecture

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

How to use HatRPC

OFAW'22 16

Step1: Write HatRPC IDL file

Step2: Use HatRPC compiler to generate source code.

Step3: Implement server handler

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

How to use HatRPC (cont.)

OFAW'22 17

Client ExampleServer Example

An RDMA-enabled Hello World example only needs ~70 LOC!

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 18

• Build HatKV, a KV Store atop HatRPC
with LMDB as the storage backend

• Set PUT and GET to be latency centric
and the corresponding multi-
operations to be throughput centric,
set payload size and concurrency
level accordingly

• Hints are also passed to LMDB to
tune configurations

HatRPC Code Generator

Feed

RPC (PUT / GET

/ MultiPUT / MultiGET)

GenerateGenerate

HatRPC

Server
LMDB

HatKV

Server

HatRPC

Client

HatKV Client

HatKV and IDL Example for YCSB Workloads

Co-designed HatKV and YCSB Example

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Overview

• Introduction
• Motivation
• HatRPC Design
• Evaluation
• Conclusion

OFAW'22 19

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 20

Cluster A

Processor Intel Skylake Gold6132 (2.6 GHZ)

RAM (DDR) 192 GB

Storage 720 GB SSD

Interconnect ConnectX-5 IB-EDR (100 Gbps)

OS CentOS Linux 7.6.1810

OFED OFED-5.0-2.1.8

Scale 10 nodes

Experimental Setup

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 21

Microbenchmark - Latency

• HatRPC can select the best
scheme, Direct-WriteIMM for
the latency goal, achieving up
to 54% improvement over
other schemes

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 22

Microbenchmark - Throughput

• HatRPC switches from Direct-WriteIMM to RFP when over-subscription (32),
yielding up to 20% improvement for 512 B messages and up to 56% for 128 KB
messages

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 23

YCSB Workload A Evaluation - Latency

• For YCSB workload A, HatRPC-Service and HatRPC-Function reduce latency by
up to 73% and 80%, respectively

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

• For YCSB workload A, HatRPC-Service and HatRPC-Function gain a speedup of
2.7x and 3.8x, respectively

OFAW'22 24

YCSB Workload A Evaluation - Throughput

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 25

YCSB Workload B Evaluation - Latency

• For YCSB workload B, HatRPC-Service and HatRPC-Function improve the
performance by up to 84% and 85%, respectively

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 26

YCSB Workload B Evaluation - Throughput

• For YCSB workload B, HatRPC-Service and HatRPC-Function can be up to 6.4x
and 7.4x faster than other schemes

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Overview

• Introduction
• Motivation
• HatRPC Design
• Evaluation
• Conclusion

OFAW'22 27

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced OFAW'22 28

• Re-examine many existing RDMA schemes and their performance in RPC systems

• Propose HatRPC, a hint-accelerated RPC based on Apache Thrift over RDMA
• Leverage hints and RDMA to improve the performance for varied communication

requirements in applications

• Co-design a HatRPC-based key-value store (HatKV) with LMDB as the backend
• Achieve up to 85% improvement for YCSB workloads over other state-of-the-art

RDMA schemes

• Acknowledgement
• Tianxi Li and Haiyang Shi
• NSF

Conclusions

Courtesy: Tianxi Li*, Haiyang Shi*, and Xiaoyi Lu. HatRPC: Hint-Accelerated Thrift RPC over RDMA. In Proceedings of the 34th International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2021. (*Co-First Authors)

Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

Thank you!

http://faculty.ucmerced.edu/luxi
http://padsys.org/

29OFAW'22

http://faculty.ucmerced.edu/luxi
http://padsys.org/

