
STATUS OF OPENFABRICS INTERFACES (OFI) SUPPORT IN
MPICH

Yanfei Guo, Assistant Computer Scientist

Argonne National Laboratory

2022 OFA Virtual Workshop

OVERVIEW

§ What is MPICH?
§ Why OFI?
§ Current Support
§ Future Plan

2 © OpenFabrics Alliance

WHAT IS MPICH?

§ MPICH is a high-performance and widely portable open-source implementation of MPI
§ It provides all features of MPI that have been defined so far (up to MPI-4.0)
§ Active development lead by Argonne National Laboratory and University of Illinois at

Urbana-Champaign
• Several close collaborators who contribute features, bug fixes, testing for quality assurance, etc.

• IBM, Microsoft, Cray, Intel, Ohio State University, Queen’s University, Mellanox, RIKEN AICS and others

§ www.mpich.org

3 © OpenFabrics Alliance

http://www.mpich.org/

MPICH: GOAL AND PHILOSOPHY

§ MPICH aims to be the preferred MPI implementation on the top machines in the world
§ Our philosophy is to create an “MPICH Ecosystem”

4 © OpenFabrics Alliance

MPICH

Intel
MPIIBM

MPI

Cray
MPI

Microsoft
MPI

MVAPICH

Tianhe
MPI

MPE

PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

Mellanox
MPICH-MXM

Lenovo
MPI

GA-MPI

CAF-MPI

OpenShmem
-MPI

MOTIVATION

§ Why OFI/OFIWG?
• Support for diverse hardware through a common API
• Actively, openly developed

• Bi-weekly calls
• Hosted on Github

• Close abstraction for MPI
• MPI community engaged from the start

• Fully functional sockets provider
• Prototype code on a laptop

• Strong Vendor Support

5 © OpenFabrics Alliance

MPICH WITH CH4 DEVICE OVERVIEW

6 © OpenFabrics Alliance

MPI Layer

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-independent
Collectives

Derived Datatype Management
(Yaksa) Group Management

CH4
CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

GPU Support
Fallback

GPU IPC

Legacy
CH3

MPICH-3.4 SERIES

§ CH4 device being the default
• Replacement for CH3 as default option, CH3 still

maintained till all of our partners have moved to CH4
• Co-design effort

• Weekly telecons with partners to discuss design and
development issues

• Three primary objectives:
• Low-instruction count communication

• Ability to support high-level network APIs (OFI, UCX)
• E.g., tag-matching in hardware, direct PUT/GET

communication
• Support for very high thread concurrency

• Improvements to message rates in highly threaded
environments (MPI_THREAD_MULTIPLE)

• Support for multiple network endpoints
(THREAD_MULTIPLE or not)

• Initial Support for GPU

7 © OpenFabrics Alliance

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
200
400
600
800

1000
1200
1400

512 (368) 1024 (184) 2048 (90) 4096 (45) 8192 (23)

Pe
rc

en
ta

ge
 S

pe
ed

up

Ti
m

es
te

ps
pe

r S
ec

on
d

Number of nodes (atoms per core)

MPICH/CH4 Eff iciency
MPICH/Original Efficiency

-5
0
5

10
15
20
25
30
35
40
45
50
55

4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

M
es

sa
ge

s/
s (

x
10

6)

Message size (B)

MPI_THREAD_SINGLE

MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_MULTIPLE with separate COMMs

MPICH-4.0 SERIES – GPU SUPPORT

8 © OpenFabrics Alliance

§ Enhanced GPU Support

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

Compute Node
GPU
GPU
MEM

GPU
GPU
MEM

HOST
MEMCPU

NIC

Compute Node
GPU

GPU
MEM

GPU

GPU
MEM

HOST
MEMCPU

NIC

§ Native GPU Data Movement
• Multiple forms of “native” data movement
• GPU Direct RDMA is generally achieved through Libfabrics

or UCX (we work with these libraries to enable it)
• GPU Direct IPC is integrated into MPICH

§ GPU Fallback Path
• GPU Direct RDMA may not be available due to system

setup (e.g. library, kernel driver, etc.)
• GPU Direct IPC might not be possible for some system

configurations
• GPU Direct (both forms) might not work for noncontiguous

data
• Datatype and Active Message Support

§ Supporting Multiple GPU Node
• Data movement between GPU devices
• Utilizing high bandwidth inter-GPU links (e.g.

NVLINK)
§ GPU-IPC Communication via Active Message
• Create IPC handles for GPU buffers
• Send IPC handles to target process
• Receiver initiate Read/Write using the IPC handle

§ Fallback Path in General SHM Active Message
• When IPC is not available for the GPU-pair

Yaksa Datatype Engine

Vector

Indexe
d

Struct

MPI Datatypes

…

Datatype
Frontend

CPU
Backend

CUDA
Backend

HIP
Backend

ZE*
Backend

CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

0

2

4

6

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Ti
m

e
(m

se
c)

Number of integers in the Z dimension

Yaksa H2H Yaksa D2D
§ Other Improvements

• Reduced Overhead for CPU buffer in a GPU-enabled MPICH build
• Avoiding unnecessary buffer location checking

MPICH-4.0 SERIES – MULTI-THREADED MPI

§ Enable strong scaling with multiple VCIs (virtual
communication interface)

§ Multi-VCI for Point-to-point implemented in 3.4.0
§ Multi-VCI for RMA added in 4.0
§ Multi-VCI for Active Messages in 4.0

§ Parallel semantics based on
communicator/rank/tag

§ Explore MPIX for direct threading
semantics

9 © OpenFabrics Alliance

GPU-STREAM-AWARE MPI

§ Mismatch between MPI communication and GPU computation
§ MPI routines do not take a stream argument and do not know
• Which stream the send data is produced on
• Which stream the receive data will be consumed on

§ Syncing with stream to do MPI can be inefficient
• Launching/Sync cost
• Missed opportunity for computation/communication overlapping

10 © OpenFabrics Alliance

MPI

stream1

stream2

stream3

Produce Consume

User has to sync the device
to make sure data is ready
for MPI to send

MPI has to sync the device to make
sure receive data is ready to be
consumed on any stream

([HFXWLRQ

.HUQHO
/DXQFKHV

�$

��������������������������W��XV�

% & $ % &6\QF

�����������������������������������W��XV�

�/� �5�

GPU-STREAM-TRIGGERED MPI OPERATION

§ Allowing point-to-point MPI to be “prepared and enqueued”
§ GPU stream triggers transmission
§ GPU-stream-aware interface

11 © OpenFabrics Alliance

MPI Application User GPU
Stream

ISEND

GPU
Stream

Sync
kernel 1

kernel 2

GPU
Idle

MPI Application
CPU Helper

Thread

ISEND_STREA
M

ISEND in Stream-aware MPI today
User GPU

Stream
Launch
Kernel 1

Launch
Kernel 2

Launch
Kernel 1

Launch
Kernel 2

kernel 1

kernel 2

ISEND
Xfer

ISEND in MPI today

Trigger

DIFFERENT WAYS OF TRIGGERING

§ Triggering Process is Essentially a Lightweight CPU-GPU Synchronization
• SET: GPU stream triggers ops on CPU
• WAIT: GPU stream waits ops on CPU
• Can also do a CPU-GPU BARRIER(-like) operation on theory

§ 3 Ways for Implementation
• Launch Host Function / Stream Callback Function – NVIDIA, AMD
• GPU Kernels – NVIDIA, AMD, Intel
• Stream Mem OP (CUDA Driver API, Kernel Driver Option Required) - NVIDIA

12 © OpenFabrics Alliance

GPU
Stream

CUDA
Thread

MPI Helper
Thread

HostFn
Op.Flag=1

If op.Flag=1
do_isend()

GPU
Stream

MPI Helper
Thread

Op.Flag=1

If op.Flag=1
do_isend()

do_isend() can be
1. Entire MPI_Isend()
2. OFI Triggered Operation

We thank Jim Dinan @ NVIDIA for his suggestions and insights.

GPU-STREAM-AWARE MPI AND MPI + THREADS

§ GPU-Stream-aware MPI is multi-threaded MPI
• Generally MPI_THREAD_MULTIPLE
• Can optimize to work with MPI_THREAD_SERIALIZE

§ Performance Consideration
• Contention between host thread and helper thread, or between multiple helper threads
• Can utilize multiple VCIs for optimization

13 © OpenFabrics Alliance

Host
Thread

GPU Helper
Thread

MPICH

OFI
Context 0

OFI
Context 1

Host
Thread

GPU Helper
Thread

MPICH

OFI
Context 0

OFI
Context 1

GPU Stream GPU Stream

Sender Receiver

MPIX_ EXTENSION TODAY

§ MPIX_Stream
• A serialized context – all operation from this context is serialized
• Can represent a GPU stream, or even a CPU thread

§ MPIX_Stream_comm_create(comm, user_strm, *stream_comm);
• Collectively create a stream comm
• Each rank associate one stream to the comm, MPIX_STREAM_NULL for not using stream
• Exchange VCI info at comm creation

§ MPIX_Stream_comm_create_multiplex(comm, user_strm, *stream_comm);
• Shared stream comm between multiple MPIX_streams

§ MPI_{Send,Recv,Isend,Irecv}_enqueue(…, stream_comm, …);
• Enqueues operation to the stream associated with the stream comm

§ MPI_{Wait,Waitall}_enqueue();
• Blocks the stream until WAIT completes

14 © OpenFabrics Alliance

https://github.com/pmodels/mpich/discussions/5908

EXAMPLE

15 © OpenFabrics Alliance

cudaStreamCreate(&cuda_st);
MPIX_Stream(cuda_st, &mpix_st);
MPIX_Stream_comm_create(MPI_COMM_WORLD, mpix_st, &stream_comm);
…
MPIX_Isend_enqueue(…, stream_comm, &req);
MPIX_Wait_enqueue(&req, MPI_STATUS_IGNORE);
…
cudaStreamSynchronize(cuda_st);

cudaStreamCreate(&cuda_st);
MPIX_Stream(cuda_st, &mpix_st);
MPIX_Stream_comm_create(MPI_COMM_WORLD, mpix_st, &stream_comm);
…
MPIX_Irecv_enqueue(…, stream_comm, &req);
MPIX_Wait_enqueue(&req, MPI_STATUS_IGNORE);
…
cudaStreamSynchronize(cuda_st);

Sender

Receiver

NEXT STEPS

§ MPIX_Stream planned in MPICH-4.1 series (4.1a1 coming soon)
• Optional, can be disable at configure time
• A prototype to understand how user would use it

§ API can change in the future
• May change based on users’ response

§ Proposal to the MPI-Forum Hybrid Programming Model WG
§ Expanding support for other GPU vendors
§ OFI Triggered Operation
• Keeping the triggered work to the minimal for maximum overlapping

16 © OpenFabrics Alliance

THANK YOU!

Yanfei Guo, Assistant Computer Scientist

Argonne National Laboratory

2022 OFA Virtual Workshop

