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OVERVIEW

§ What is MPICH?
§ Why OFI?
§ Current Support
§ Future Plan
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WHAT IS MPICH?

§ MPICH is a high-performance and widely portable open-source implementation of MPI
§ It provides all features of MPI that have been defined so far (up to MPI-4.0)
§ Active development lead by Argonne National Laboratory and University of Illinois at 

Urbana-Champaign
• Several close collaborators who contribute features, bug fixes, testing for quality assurance, etc.

• IBM, Microsoft, Cray, Intel, Ohio State University, Queen’s University, Mellanox, RIKEN AICS and others

§ www.mpich.org
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http://www.mpich.org/


MPICH: GOAL AND PHILOSOPHY

§ MPICH aims to be the preferred MPI implementation on the top machines in the world
§ Our philosophy is to create an “MPICH Ecosystem”
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MOTIVATION

§ Why OFI/OFIWG?
• Support for diverse hardware through a common API
• Actively, openly developed

• Bi-weekly calls
• Hosted on Github

• Close abstraction for MPI
• MPI community engaged from the start

• Fully functional sockets provider
• Prototype code on a laptop

• Strong Vendor Support
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MPICH WITH CH4 DEVICE OVERVIEW
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MPICH-3.4 SERIES

§ CH4 device being the default
• Replacement for CH3 as default option, CH3 still

maintained till all of our partners have moved to CH4
• Co-design effort 

• Weekly telecons with partners to discuss design and 
development issues

• Three primary objectives:
• Low-instruction count communication

• Ability to support high-level network APIs (OFI, UCX)
• E.g., tag-matching in hardware, direct PUT/GET 

communication
• Support for very high thread concurrency

• Improvements to message rates in highly threaded 
environments (MPI_THREAD_MULTIPLE)

• Support for multiple network endpoints 
(THREAD_MULTIPLE or not)

• Initial Support for GPU
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MPICH-4.0 SERIES – GPU SUPPORT
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§ Enhanced GPU Support

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA
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§ Native GPU Data Movement
• Multiple forms of “native” data movement
• GPU Direct RDMA is generally achieved through Libfabrics

or UCX (we work with these libraries to enable it)
• GPU Direct IPC is integrated into MPICH

§ GPU Fallback Path
• GPU Direct RDMA may not be available due to system 

setup (e.g. library, kernel driver, etc.)
• GPU Direct IPC might not be possible for some system 

configurations
• GPU Direct (both forms) might not work for noncontiguous 

data
• Datatype and Active Message Support

§ Supporting Multiple GPU Node
• Data movement between GPU devices
• Utilizing high bandwidth inter-GPU links (e.g.

NVLINK)
§ GPU-IPC Communication via Active Message
• Create IPC handles for GPU buffers
• Send IPC handles to target process
• Receiver initiate Read/Write using the IPC handle

§ Fallback Path in General SHM Active Message
• When IPC is not available for the GPU-pair
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§ Other Improvements

• Reduced Overhead for CPU buffer in a GPU-enabled MPICH build
• Avoiding unnecessary buffer location checking



MPICH-4.0 SERIES – MULTI-THREADED MPI

§ Enable strong scaling with multiple VCIs (virtual 
communication interface)

§ Multi-VCI for Point-to-point implemented in 3.4.0
§ Multi-VCI for RMA added in 4.0
§ Multi-VCI for Active Messages in 4.0

§ Parallel semantics based on 
communicator/rank/tag

§ Explore MPIX for direct threading
semantics
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GPU-STREAM-AWARE MPI

§ Mismatch between MPI communication and GPU computation
§ MPI routines do not take a stream argument and do not know
• Which stream the send data is produced on
• Which stream the receive data will be consumed on

§ Syncing with stream to do MPI can be inefficient
• Launching/Sync cost
• Missed opportunity for computation/communication overlapping
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GPU-STREAM-TRIGGERED MPI OPERATION

§ Allowing point-to-point MPI to be “prepared and enqueued”
§ GPU stream triggers transmission
§ GPU-stream-aware interface
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DIFFERENT WAYS OF TRIGGERING

§ Triggering Process is Essentially a Lightweight CPU-GPU Synchronization
• SET: GPU stream triggers ops on CPU
• WAIT: GPU stream waits ops on CPU
• Can also do a CPU-GPU BARRIER(-like) operation on theory

§ 3 Ways for Implementation
• Launch Host Function / Stream Callback Function – NVIDIA, AMD
• GPU Kernels – NVIDIA, AMD, Intel
• Stream Mem OP (CUDA Driver API, Kernel Driver Option Required) - NVIDIA

12 © OpenFabrics Alliance

GPU
Stream

CUDA
Thread

MPI Helper
Thread

HostFn
Op.Flag=1

If op.Flag=1
do_isend()

GPU
Stream

MPI Helper
Thread

Op.Flag=1

If op.Flag=1
do_isend()

do_isend() can be
1. Entire MPI_Isend()
2. OFI Triggered Operation

We thank Jim Dinan @ NVIDIA for his suggestions and insights.



GPU-STREAM-AWARE MPI AND MPI + THREADS

§ GPU-Stream-aware MPI is multi-threaded MPI
• Generally MPI_THREAD_MULTIPLE
• Can optimize to work with MPI_THREAD_SERIALIZE

§ Performance Consideration
• Contention between host thread and helper thread, or between multiple helper threads
• Can utilize multiple VCIs for optimization
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MPIX_ EXTENSION TODAY

§ MPIX_Stream
• A serialized context – all operation from this context is serialized
• Can represent a GPU stream, or even a CPU thread

§ MPIX_Stream_comm_create(comm, user_strm, *stream_comm);
• Collectively create a stream comm
• Each rank associate one stream to the comm, MPIX_STREAM_NULL for not using stream
• Exchange VCI info at comm creation

§ MPIX_Stream_comm_create_multiplex(comm, user_strm, *stream_comm);
• Shared stream comm between multiple MPIX_streams

§ MPI_{Send,Recv,Isend,Irecv}_enqueue(…, stream_comm, …);
• Enqueues operation to the stream associated with the stream comm

§ MPI_{Wait,Waitall}_enqueue();
• Blocks the stream until WAIT completes

14 © OpenFabrics Alliance

https://github.com/pmodels/mpich/discussions/5908



EXAMPLE
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cudaStreamCreate(&cuda_st);
MPIX_Stream(cuda_st, &mpix_st);
MPIX_Stream_comm_create(MPI_COMM_WORLD, mpix_st, &stream_comm);
…
MPIX_Isend_enqueue(…, stream_comm, &req);
MPIX_Wait_enqueue(&req, MPI_STATUS_IGNORE);
…
cudaStreamSynchronize(cuda_st);

cudaStreamCreate(&cuda_st);
MPIX_Stream(cuda_st, &mpix_st);
MPIX_Stream_comm_create(MPI_COMM_WORLD, mpix_st, &stream_comm);
…
MPIX_Irecv_enqueue(…, stream_comm, &req);
MPIX_Wait_enqueue(&req, MPI_STATUS_IGNORE);
…
cudaStreamSynchronize(cuda_st);

Sender

Receiver



NEXT STEPS

§ MPIX_Stream planned in MPICH-4.1 series (4.1a1 coming soon)
• Optional, can be disable at configure time
• A prototype to understand how user would use it

§ API can change in the future
• May change based on users’ response

§ Proposal to the MPI-Forum Hybrid Programming Model WG
§ Expanding support for other GPU vendors
§ OFI Triggered Operation
• Keeping the triggered work to the minimal for maximum overlapping
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