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« End of Dennard scaling

» Rise of resource disaggregation

* Intense demands of Al and ML

—> High throughput no longer
sufficient

- Complex requirements,
application-specificity

network crucial
to applications

= L. Network as an
@ application accelerator
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« Extreme performance demands

« Unpredictable, new application | Perfect storm?

workloads No! Beginning of a golden age!
« Compute technology limitations
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What We Need

« Extracting performance, while staying as general as possible

« Allow for application and workload tailored functioning for extremely
demanding high-volume applications

« Atough balancing act!
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The Trajectory of Today s Networking

Claim: Good starting points today, but they don'’t strike the right balance and
are headed in sub-optimal directions

« Custom designs that sacrifice generality, expensive to deploy
« Or generality at the expense of performance
« Poor abstractions
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This Talk

Explore the current space and the path forward using two
examples:

« Congestion control
* In-network computing

@ WHAT STARTS HERE CHANGES THE WORLD
OPENFABRICS
ALLIANCE
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SOTA Congestion Control: The Switch Side

« Early switches: passive observers of congestion, provided imprecise
and slow feedback

— Asingle or few bits of information (CNP), delivered at RTT time scales
* INT (in-band network telemetry) has changed the game today

— Detailed congestion signaling

— Precise per-hop delays and headroom, egress queue measurements

— Has improved the precision of information
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Switch Side Congestion Control

» While precise, the feedback has delay and propagation issues:
— Large RTT-timescale end-to-end signaling loop
— Signals are carried by packets that are themselves experiencing congestion

— Congestion queuing delay can spike up to 1ms - 1-2 orders of magnitude larger than
DCN RTT!

The University of Texas at Austin

» Insight: decouple congestion signaling loop from congestion path
— Crucial at high link speeds
— Most messages are well below one BDP
— End-to-end reaction is not tenable
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Back-to-Sender and Source Flow Control

" « Switch ingress sends back-to-

gress Pipeline Traffic Manager Egress Pipeline .
sender or “BTS” with a pause

. IE-_ pkt (ECN, INT) |‘: - duratIOn
| ER—— ; « Sender instantly stops the affected
| T ? N traffic for the duration (SFC)
. “ 1\ Builder * Moves congestion queuing from

lpkt] < @ v the switch buffer to the sender

buffer
J ACK (ECN, INT)
Sender node Receiver node « For near-source control, cache

pause time at sender ToRs
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Switch Side: The Road Ahead

« We can do precise and timely feedback, but what to include?

Congestion control doesn’t operate in isolation — need to also balance
network-wide and app-specific needs

 Rich feedback comes at a trade-off that we need to balance
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Switch Side: The Road Ahead

« Design programmable feedback to guide these?

— Path selection — allow sender to switch to an alternate path upon
experiencing persistent congestion

— Multi-pathing — allow sender to determine how to spread load across
multiple available paths, while determining path overlap

— Inform application-layer decisions — guide placement and scheduling
decisions to better overlap communication and computation
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SOTA Congestion Control: The Host Side

Early approaches: sender-side, window-driven, drop-based congestion

response, all in the software stack
Many advances:
— Rate- and delay-based algorithms

— Integration with INT

» Google’s Poseidon tracks max per-hop
delay, adjusts sending rate until observed
delay matches sender-rate specific target

— Hardware accelerated congestion
control, e.g., TCP offload engines
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Host Side: The Road Ahead ()

« Marry the speed/efficiency of hardware support with the velocity of
software implementations?
« Why do we need a new approach? Aren’t existing hardware-based

schemes enough?
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Stateful Connection-Oriented Transport Pathologies

« Connection caches can lead to pathologies and huge performance cliffs
at extreme scales

« Multiplexing operations atop a few connections can lead to head of line
blocking and fate sharing

« Congestion control and loss recovery cannot evolve post-deployment

Connection-oriented-ness appears to be a bad idea
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A Different Approach: 1RMA

Judicious division of labor between hardware and software leading to a
simple and fixed-function 1RMA NIC aided by 1RMA software

TEXA

Fixed-function NIC hardware with explicitly allocated resources
- Connection-free independent ops
- Explicitly-finite hardware resource pools
- Solicitation

Connection-free security protocol with management ops

Software-driven, hardware-assisted congestion control

17
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1RMA: Connection-Free Independent Ops

1RMA NIC acts on fixed-sized ops and treats them independently

- Provides fail-fast behavior: NIC ensures op completion within a fixed time; otherwise delivers fast and
precise op failure notifications to software Op from Precise failure

host \ / notification
T

/Op response from NIC
network

1RMA NIC leaves retry, ordering, congestion control and segmentation to software

RDMA 1RMA
Software' NIC Software I NIC
— ! . !
! 4 Segmentation N Segmentation | 4 )
I Inter-op Ordering Inter-op Ordering 1 | Op Execution
: . Per-?_p Rg::tryt | |:'> Per-op Retry | erptq
, ongestion Lontro Congestion Control | ;| Solicitation
, Op Execution ;
~ ) 1L J \_ J ! \ J

1RMA NIC state does not grow with endpoint pairs

18



Congestion Control: Main Takeaway

Preserve algorithmic, design, and evolution flexibility while
enabling fine-grained and low-level control
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A Rich Design Space: There s More to Host-side

e Multi-window congestion control algorithms: custom fine-grained
reactions to different bottlenecks

e Receiver-driven and solicitation-based congestion control: better
modulation of load, avoid the first RTT problems, but unclear how to
Integrate with applications
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A Rich Design Space: There s More to Host-side

e Accelerator-to-accelerator communication: how should the host be
iInvolved and how to enable co-existence with other transports?

e Integrating custom ops into transports: e.g., Scan-and-Read,
collectives, dependent connections. What is the right software
architecture? Safety and performance guarantees?
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In-Network Computing

Promises to counter limitations of hardware performance scaling
NICs and switches, and serving a range of different applications
Significant performance speed-up, CPU and latency savings
There is a lot of fertile ground and room for additional work!
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SOTA In-Network Computing

Implement functions in P4 to run atop match-action tables
Leverage simple stateful processing support on NICs or switches
Impressive demonstrations, e.g., of ML acceleration

Specific on-NIC accelerators, e.g., RPC stack offload, RPC load
balancing and scheduling

Exciting area, but growth appears amorphous (to me)



In-Network Computing Examples

Executing operations on each packet at
line rate with predictable latency!

In-network In-network

Network DDoS : I Many
middleboxes defenses aggregation key-value more...
for ML cache E
~ ' 4

N 4
Smart NICs

Smart NICs

Programmable switches

Packet and message processing functions, DMA operations
Collectives, e.g., barriers, reduction operations, and all-to-all shuffles
Promising early days but miles to go! :
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Today’s view of in-network computing

Single app
Single tenan

Scaling Distributed Machine Learning with In-Network Aggregatimj

Ripple: A Programmable, Decentralized Link-Flooding Defense

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and
Heavy-Hitter Detection Entirely in the Data Plane

Language-Directed Hardware Design for
One Sketch to Rule Them All:
NetChain: Scale-Free Sub-RTT Coordination

Paxos Made Switch-y

’

Single devic:

- No multiplexing Huyr NetCache: Balancing Key-Value Stores
across multiple apps Just Say NO to Paxos Overhead:
« No resource elasticity Replacing Consensus with Network Ordering

* No fault resilience
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The Road Ahead (1)

Multiple
apps

Network

« Multiplexing across
multiple apps

» Resource elasticity

 Fault resilience

no
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Elastic and resilient in-network computing
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Abstractions & Programming APIs

Virtual memory Resource multiplexing Fault tolerance

! .! N e ! !
o{%"\ /‘ﬁ.‘y}"o

Runtime environments: Resource management

&) WHAT STARTS HERE CHANGES THE WORLD
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The Road Ahead (1)

The previous was about missing software abstractions

But there’s also a mismatch today between hardware designs and high-
level requirements

SmartNICs and programmable switches assume single tenant with
fixed/rigid requirements

Multiple tenants, possibly needing customizable chains of functions, is
the future
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PAN | C: Generality + chaining + multi-tenancy —

at line-rate!
(Lin et al, OSDI'20)
L| cu1 Service A
Packet Buffer W Priorty 4 Cu2 Service B
Queue (PIFO)
Array
-| Cus Service A
Switching Fabric

Service Service
A B
PK_LEN BUF_ADDR CHAIN_LEN: 2 CHAIN: A-> B Net K To
MAC MAC etwor - Host
PHY PHY Packet

0 16 32 36 variable

If from WAN? If compressed?
v v
Reconfigurable-Match-Action QSFP28  QSFP28 Compute Unit (CU): Support
Pipeline: Parse packets and determine g hardware accelerator or CPU core
offload chain
High-throughput Switching

Central Push-in-First-Out Scheduler: Fabric: Interconnects different
enforce isolation policies and schedule hardware resources.

chains/packets
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The Road Ahead (2): New Programming Languages

P4 has been great, but both the language and the ecosystem have
drawbacks

P4 unsuited for the rich in-network computing applications, especially on
SmartNICs

Custom extensions to P4 limit portability, increase developer burden
P4 abstractions are a poor fit for emerging NICs
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The Need for a New Programmlng Language
and Toolchalin

« Control over parallel processing and barriers

* Richer interface to ASICs than “extern”

« Message processing support

« Simple building blocks that aid backend development
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GummiP4

« GummiP4’s new language features:

Expressiveness: Provide new
constructs to easily write interesting and
useful SmartNIC programs.

Compiler Assistance: Aids the
compilation process by allowing the
programmer to expose domain-specific
information to the compiler.

»  GummiP4’s compiler toolchain:

Optimal Performance: Generate highly
optimized NIC programs that require
minimal resources and execute quickly.

Extensible: Our compiler design is
extensible, as all important
optimizations happen in a target-
independent manner. Therefore,
hardware vendors can easily write new
backends for upcoming SmartNICs.

New Language Features:
Extended P4 with added
new language features.

Extensible Compiler
Toolchain: Important
optimizations are target
independent and can be
reused across NIC
backends

GummiP4  Architecture
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In-Network Computing: Main Takeaways

« Ground-up support for multi-tenancy both at hardware and software
levels

« Ground-up new abstractions to program and control emerging NICs
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Parting Thoughts

Exciting times for network technology, but providing ground-up
and low-level control is key to preserving flexibility

Congestion control continues to be a challenge, but a stable
approach is to provide rich feedback to aid programmable logic

Multi-tenancy support appears to be an obvious missing piece

New abstractions and programming models are sorely needed,
especially on the NIC front
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