
The Next Decade of Networking: Challenges and

Opportunities

Aditya Akella, Regents Chair in Computer Sciences

2023 OFA Virtual Workshop

A “Simple” Contract Between Apps and the Network

Network:

Efficiently move

bits around

App: network as

a dumb pipe

Blurring of Boundaries • End of Dennard scaling

• Rise of resource disaggregation

• Intense demands of AI and ML

→High throughput no longer

sufficient

→Complex requirements,

application-specificity

A high performance

network crucial

to applications

Network as an

application accelerator

High throughput,

fixed vs elastic Low latency Gang-scheduled

Real time

streaming

High throughput, low latency

Ephemeral vs long running
PersistenceDurability

Object caches Geo-distribution

Extremely diverse and

tight SLOs

Shifting and

Tightening Contracts

• Extreme performance demands

• Unpredictable, new application

workloads

• Compute technology limitations

Perfect storm?
No! Beginning of a golden age!

• Extracting performance, while staying as general as possible

• Allow for application and workload tailored functioning for extremely

demanding high-volume applications

• A tough balancing act!

What We Need

The Trajectory of Today’s Networking

Claim: Good starting points today, but they don’t strike the right balance and

are headed in sub-optimal directions

• Custom designs that sacrifice generality, expensive to deploy

• Or generality at the expense of performance

• Poor abstractions

This Talk

Explore the current space and the path forward using two

examples:

• Congestion control

• In-network computing

SOTA Congestion Control: The Switch Side

• Early switches: passive observers of congestion, provided imprecise

and slow feedback

– A single or few bits of information (CNP), delivered at RTT time scales

• INT (in-band network telemetry) has changed the game today

– Detailed congestion signaling

– Precise per-hop delays and headroom, egress queue measurements

– Has improved the precision of information

Switch Side Congestion Control

• While precise, the feedback has delay and propagation issues:

– Large RTT-timescale end-to-end signaling loop

– Signals are carried by packets that are themselves experiencing congestion

– Congestion queuing delay can spike up to 1ms → 1-2 orders of magnitude larger than

DCN RTT!

• Insight: decouple congestion signaling loop from congestion path

– Crucial at high link speeds

– Most messages are well below one BDP

– End-to-end reaction is not tenable

Back-to-Sender and Source Flow Control

• Switch ingress sends back-to-

sender or “BTS” with a pause

duration

• Sender instantly stops the affected

traffic for the duration (SFC)

• Moves congestion queuing from

the switch buffer to the sender

buffer

• For near-source control, cache

pause time at sender ToRs

Switch Side: The Road Ahead

• We can do precise and timely feedback, but what to include?

• Congestion control doesn’t operate in isolation – need to also balance

network-wide and app-specific needs

• Rich feedback comes at a trade-off that we need to balance

Switch Side: The Road Ahead

• Design programmable feedback to guide these?

– Path selection – allow sender to switch to an alternate path upon

experiencing persistent congestion

– Multi-pathing – allow sender to determine how to spread load across

multiple available paths, while determining path overlap

– Inform application-layer decisions – guide placement and scheduling

decisions to better overlap communication and computation

SOTA Congestion Control: The Host Side

• Early approaches: sender-side, window-driven, drop-based congestion

response, all in the software stack

• Many advances:

– Rate- and delay-based algorithms

– Integration with INT

• Google’s Poseidon tracks max per-hop

delay, adjusts sending rate until observed

delay matches sender-rate specific target

– Hardware accelerated congestion

control, e.g., TCP offload engines

Host Side: The Road Ahead (I)

• Marry the speed/efficiency of hardware support with the velocity of

software implementations?

• Why do we need a new approach? Aren’t existing hardware-based

schemes enough?

Stateful Connection-Oriented Transport Pathologies

• Connection caches can lead to pathologies and huge performance cliffs

at extreme scales

• Multiplexing operations atop a few connections can lead to head of line

blocking and fate sharing

• Congestion control and loss recovery cannot evolve post-deployment

Connection-oriented-ness appears to be a bad idea

A Different Approach: 1RMA
Judicious division of labor between hardware and software leading to a

simple and fixed-function 1RMA NIC aided by 1RMA software

17

Fixed-function NIC hardware with explicitly allocated resources

- Connection-free independent ops

- Explicitly-finite hardware resource pools

- Solicitation

Connection-free security protocol with management ops

Software-driven, hardware-assisted congestion control

1RMA: Connection-Free Independent Ops
1RMA NIC acts on fixed-sized ops and treats them independently

- Provides fail-fast behavior

1RMA NIC leaves retry, ordering, congestion control and segmentation to software

1RMA NIC state does not grow with endpoint pairs
18

NIC

Segmentation

Inter-op Ordering

Per-op Retry

Congestion Control

Op Execution

Software

Segmentation

Inter-op Ordering

Per-op Retry

Congestion Control

Op Execution

Crypto

Solicitation

NIC

RDMA 1RMA

Software

Op response from

network

Precise failure

notification

Op from

host

T

NIC

; otherwise delivers fast and

precise op failure notifications to software

: NIC ensures op completion within a fixed time

Congestion Control: Main Takeaway

Preserve algorithmic, design, and evolution flexibility while

enabling fine-grained and low-level control

A Rich Design Space: There’s More to Host-side

● Multi-window congestion control algorithms: custom fine-grained

reactions to different bottlenecks

● Receiver-driven and solicitation-based congestion control: better

modulation of load, avoid the first RTT problems, but unclear how to

integrate with applications

● Accelerator-to-accelerator communication: how should the host be

involved and how to enable co-existence with other transports?

● Integrating custom ops into transports: e.g., Scan-and-Read,

collectives, dependent connections. What is the right software

architecture? Safety and performance guarantees?

A Rich Design Space: There’s More to Host-side

In-Network Computing
● Promises to counter limitations of hardware performance scaling

● NICs and switches, and serving a range of different applications

● Significant performance speed-up, CPU and latency savings

● There is a lot of fertile ground and room for additional work!

SOTA In-Network Computing
● Implement functions in P4 to run atop match-action tables

● Leverage simple stateful processing support on NICs or switches

● Impressive demonstrations, e.g., of ML acceleration

● Specific on-NIC accelerators, e.g., RPC stack offload, RPC load

balancing and scheduling

● Exciting area, but growth appears amorphous (to me)

In-Network Computing Examples

Programmable switches
Smart NICs Smart NICs

Network
middleboxes

DDoS
defenses

In-network
aggregation

for ML

Many
more…

Executing operations on each packet at
line rate with predictable latency!

2

4

In-network
key-value

cache

Packet and message processing functions, DMA operations

Collectives, e.g., barriers, reduction operations, and all-to-all shuffles

Promising early days but miles to go!

Today’s view of in-network computing

• No multiplexing
across multiple apps

• No resource elasticity

• No fault resilience

Single device

Single app

Single tenant

2

5

The Road Ahead (1)

• No multiplexing across
multiple apps

• No resource elasticity

• No fault resilience

• Multiplexing across
multiple apps

• Resource elasticity

• Fault resilience

Single device

Single app

Network

Multiple

apps

2

6

Elastic and resilient in-network computing

Runtime environments: Resource management

Abstractions & Programming APIs

Virtual memory Resource multiplexing Fault tolerance

2

7

The Road Ahead (1)
● The previous was about missing software abstractions

● But there’s also a mismatch today between hardware designs and high-

level requirements

● SmartNICs and programmable switches assume single tenant with

fixed/rigid requirements

● Multiple tenants, possibly needing customizable chains of functions, is

the future

Reconfigurable-Match-Action
Pipeline: Parse packets and determine
offload chain

Central Push-in-First-Out Scheduler:
enforce isolation policies and schedule
chains/packets

Packet Buffer

CU 1

CU 2

CU 3
On-chip

Memory

DMA

Engine

Switching Fabric

RMT

MAC

PHY

MAC

PHY

PCIe Gen4 x8

QSFP28 QSFP28

port0 port1

HW Priority

Queue (PIFO)

Array Credit

Manager

PK_LEN BUF_ADDR CHAIN: A-> B

0 16 32 36

CHAIN_LEN: 2

variable

Service A

Service B

Service A

Service

A

Network

Packet

Service

B

To

Host

If from WAN? If compressed?

Scheduler

Compute Unit (CU): Support
hardware accelerator or CPU core

High-throughput Switching
Fabric: Interconnects different
hardware resources.

PANIC:
(Lin et al, OSDI’20)

Generality + chaining + multi-tenancy –

at line-rate!

The Road Ahead (2): New Programming Languages

• P4 has been great, but both the language and the ecosystem have

drawbacks

• P4 unsuited for the rich in-network computing applications, especially on

SmartNICs

• Custom extensions to P4 limit portability, increase developer burden

• P4 abstractions are a poor fit for emerging NICs

The Need for a New Programming Language

and Toolchain

• Control over parallel processing and barriers

• Richer interface to ASICs than “extern”

• Message processing support

• Simple building blocks that aid backend development

GummiP4

Front End

Compiler

FPGA-target

Backend

Customed NIC

Backend

SoC-target

Backend

Verilog Code
Customized Bin &

NIC Configs

C code & NIC

configs

GummiP4

Program

Architecture

Specification

Accelerator Interaction

Optimizations

MidEnd Compiler

Extensible Compiler

Toolchain: Important

optimizations are target

independent and can be

reused across NIC

backends

Parallelism

Optimizations

State Placement

Optimizations

DMA Operation

Optimizations

BackEnd Compiler

FrontEnd Compiler

New Language Features:

Extended P4 with added

new language features.

• GummiP4’s new language features:

• Expressiveness: Provide new
constructs to easily write interesting and
useful SmartNIC programs.

• Compiler Assistance: Aids the
compilation process by allowing the
programmer to expose domain-specific
information to the compiler.

• GummiP4’s compiler toolchain:

• Optimal Performance: Generate highly
optimized NIC programs that require
minimal resources and execute quickly.

• Extensible: Our compiler design is
extensible, as all important
optimizations happen in a target-
independent manner. Therefore,
hardware vendors can easily write new
backends for upcoming SmartNICs.

In-Network Computing: Main Takeaways

• Ground-up support for multi-tenancy both at hardware and software

levels

• Ground-up new abstractions to program and control emerging NICs

Parting Thoughts

• Exciting times for network technology, but providing ground-up

and low-level control is key to preserving flexibility

• Congestion control continues to be a challenge, but a stable

approach is to provide rich feedback to aid programmable logic

• Multi-tenancy support appears to be an obvious missing piece

• New abstractions and programming models are sorely needed,

especially on the NIC front

	Untitled Section
	Slide 1: The Next Decade of Networking: Challenges and Opportunities
	Slide 2: A “Simple” Contract Between Apps and the Network
	Slide 3: Blurring of Boundaries
	Slide 4: Shifting and Tightening Contracts
	Slide 5
	Slide 6: What We Need
	Slide 7: The Trajectory of Today’s Networking
	Slide 8: This Talk
	Slide 9: SOTA Congestion Control: The Switch Side
	Slide 10: Switch Side Congestion Control
	Slide 11: Back-to-Sender and Source Flow Control
	Slide 12: Switch Side: The Road Ahead
	Slide 13: Switch Side: The Road Ahead
	Slide 14: SOTA Congestion Control: The Host Side
	Slide 15: Host Side: The Road Ahead (I)
	Slide 16: Stateful Connection-Oriented Transport Pathologies
	Slide 17: A Different Approach: 1RMA
	Slide 18: 1RMA: Connection-Free Independent Ops
	Slide 19: Congestion Control: Main Takeaway
	Slide 20: A Rich Design Space: There’s More to Host-side
	Slide 21: A Rich Design Space: There’s More to Host-side
	Slide 22: In-Network Computing
	Slide 23: SOTA In-Network Computing
	Slide 24: In-Network Computing Examples
	Slide 25: Today’s view of in-network computing
	Slide 26: The Road Ahead (1)
	Slide 27: Elastic and resilient in-network computing
	Slide 28: The Road Ahead (1)
	Slide 29: PANIC:
	Slide 30: The Road Ahead (2): New Programming Languages
	Slide 31: The Need for a New Programming Language and Toolchain
	Slide 32: GummiP4
	Slide 33: In-Network Computing: Main Takeaways
	Slide 34: Parting Thoughts

