

2023 OFA Virtual Workshop

ADDRESSING ENDPOINT-INDUCED CONGESTION IN A SCALE-OUT ACCELERATOR DOMAIN

Timothy Chong, Venkata Krishnan

Timothy.Chong@intel.com Venkata.Krishnan@intel.com

April 11, 2023

Going beyond scale-up – Scaling out accelerators is the next challenge

challenge. This includes network protocol enhancements.

Host vs. Network Congestion

Network Congestion

Host Congestion

Contributions

Hardware-based networking policy targeting endpoint host congestion

Targets medium-scale (100's) domains, leveraging underlying physical connectivity from the loosely coupled domains

Works on a lossy fabric, eliminating the need for PFC (unlike RoCEv2)

More reactive and less conservative than traditional TCP-like policies

Host Congestion: A traditionally overlooked issue

Network delays and congestions have traditionally been viewed as the primary bottleneck (RDMA [7], RoCEv2 w/ ECN& PFC, TIMELY [8])

Communication Domains

Node – tightly coupled coherent domain
BEST connectivity – typically coherent shared memory
Latency threshold < 2us

Somewhat tightly coupled (e.g. 1K nodes)

- BETTER connectivity > 400Gbps per node injection
- Latency threshold < 8us
- Customized transport over a <u>standard</u> network

Loosely coupled – data center/HPC system (e.g. 64K nodes)

- GOOD connectivity > 100Gbps per node injection
- Traditional network semantics

Small

Medium (sweet spot for a scale-out accelerator domain)

Large

COPA background FPGAs as autonomous entities on a system

Target plays an active role (receiver-driven) for congestion avoidance & mitigation. Traditional schemes are initiator driven, with receiver playing a passive role.

Protocol Design Goals

Minimize modification

Piggybacking on existing ACK's infrastructure (duplicate ACK's)

Maximize throughput

transmit the maximum number of packets (streaming) in the absence of host congestion

Prevent congestion

- Receiver promptly alert senders of host congestion to avoid potential packet drop (NACK)
- Signal based on receiver processing queue depth

timely notification to sender when endpoint congestion subsides

Fast recovery

Reliable PUTs and GETs

Baseline approaches

Initiator-side windowing

AIMD (TCP-like)

Window = 1

* In TCP, 3+ duplicate ACK's are treated as NACK

Target policy for generating ACK and duplicate ACK

threshold Incoming packet – Incoming packet – acked Incoming packet Not acked acked ACKs are suppressed. Duplicate ACKs are sent to tell the sender ACKs are sent to tell the sender that the retransmit buffer for to slow down. the packet can be freed

Target interface ring buffer (placeholder prior to writing to memory)

Ack immediately with largest sequence number in green region when:

New packet arrival 1.

Packet transitions the threshold from above to below 2.

Methodology

- Custom simulator based on BookSim
 - Implements COPA reliable transport/UDP/Ethernet
 - Models Ethernet (lossy fabric with packet drops at switches & endpoints)
 - Baseline results validated with COPA hardware implementation
- Current results
 - Unicast traffic
 - Compared against baseline and AIMD policies
 - Varying host processing bandwidth from 50-80% of link bandwidth

New scheme eliminates packet drops

Quantifying packet drops across different schemes

Packets drop rate normalized to host bandwidth Queue depth normalized to bandwidth delay product (RTT * switch bandwidth)

Quantifying goodput across different schemes

Shows improvement for unicast flows but savings in packet drops will improve network utilization

Goodput normalized to host bandwidth Queue depth normalized to bandwidth delay product (RTT * switch bandwidth)

Takeaways

Reduced network congestion

• Fewer packet drops and retries result in lower network traffic, reducing the likelihood of congestion

Improved effective network bandwidth

• Minimizing packet retries reduces switch bandwidth wasted due to retransmissions.

Improvement in end-to-end goodput

- Negligible with high host congestion, but there is savings in packet drops
- Significant if policy can reduce packet-loss-induced host idle time (when host congestion goes away)

FUTURE WORK

Extend studies to multi-node flows

Expand BookSim model to include traffic generation with workloads

Explore various network configurations

Integrate policy into COPA transport and implement on an FPGA