
Intel ConfidentialIntel Software 1

libfabric Composability:
Peer Provider Architecture

Sean Hefty

Intel Corporation

2023 OFA Virtual Workshop

libfabric Classic Architecture
Illustrative Components

Legend

Linux Kernel
Subsystems

libfabric

HW

Middleware

Lower-level
APIs

SW call path

Network

Kernel bypass

RDMA SubNetDev Sub
kernel

user-space

libfabric API

libfabric

Network
(Ethernet)

Verbs
Provider

Middleware
(MPI, oneCCL, oneSHMEM…)

Sockets RDMA APIs

NIC RDMA NIC

Core

Provider API

TCP
Provider

tmpfs

SHM
Provider

POSIX shm

EFA
Provider

EFA NIC

App codes to libfabric to
run in any one environment

Using Multiple Providers
Example: Shared Memory + Network Provider

Legend

libfabric

MiddlewareSW call path

What if the app wants
to use 2 providers?

Alternative: tight coupling
between providers

libfabric API

libfabric

SHM
Provider

Middleware
(MPI, oneCCL, oneSHMEM…)

Core

Provider API

Verbs
Provider

Today: App opens
both providers

EFA
Provider

2 providers

Twice as many objects

domains – register memory twice
endpoints – double receive buffers
completion queues – check two

Tightly coupled implementation

Higher development costs

Reuse SHM core
Hide internal use of SHM
Need to repeat for other providers

App picks provider
based on target address

E.g. overall performance will improve if the app can
leverage shared memory for intranode communication

Using Multiple Providers
Complex, Theoretical Scenarios

Legend

libfabric

MiddlewareSW call path

libfabric API

libfabric

SHM
Provider

Middleware
(MPI, oneCCL, oneSHMEM…)

Core

Provider API

RDMA
Network

Rack-Level
Network

GPU-Network
Provider

Switch
Provider

Traditional HPC
network for scale-out

Intranode
or scale-up

Enhanced rack or
pod-level network

Accelerator
network

Switch-based
accelerations

App opens

?

Theoretical (some don’t exist)

Independent providers optimized
for specific technologies

What if multiple providers are
needed for optimal performance?

Tight coupling
becomes impractical

Link Provider (Optional)

Using Multiple Providers
Example: Shared Memory + Network Provider

Legend

libfabric

MiddlewareSW call path

Needed: efficient cooperation of
independent providers

libfabric API

libfabric

SHM
Provider

Middleware
(MPI, oneCCL, oneSHMEM…)

Core

Provider API

Verbs
Provider

App opens one provider,
but has access to both

Peer API

Keep providers
highly focused

Orchestration handled by
core provider or (future)

link provider

Once a provider is enabled for
peer API support, can swap in

another to its right or left

Peer APIs

Allow independent
development

Easy for providers
to adopt

Generically combining a half
dozen independently

developed providers without
losing performance. And,

how, exactly, do you intend to
accomplish this?

Review: libfabric API
Legend

Object
dependency

Event
Queues

Completion
Queues

Completion
Counters

Passive
Endpoints

Active
Endpoints

Memory
Regions

Fabric

Domain
Address
Vector

struct fid_ep {

…

struct fi_ops_msg *msg;

struct fi_ops_rma *rma;

…

};

static inline

fi_send(ep, buf, len, …)

{

return ep->msg->send(ep, …)

}

Example: active endpont

User invokes direct
call on object

API defines user
interface to objects

Peer ProviderOwner Provider

Peer Object Model
Sharable Fabric Identifiers (FIDs)

Legend

libfabric API

Active
Endpoint

Completion
Queue

Owner EP
get_rbuf()

Owner CQ
write()

fi_cq_read()fi_send()

SW call path

Peer EP
start_rx()

Peer CQ
progress()

Peer objects define provider
to provider callbacks

Define objects to share
between providers

Conceptual example (details in next talks)

Intel ConfidentialIntel Software 9

THANK YOU

How many people even
get this reference

Don’t change that dial!
More details to follow!

10 © OpenFabrics Alliance

EXAMPLE - OWNER: LNX

lnx

Shared
Completion

Queue

Shared
Receive
Context

core shm

Imported
CQ

Imported
SRX

0(4) 1(5) 2(6) 3(7)

Local peers (fi_addr)Remote peers (fi_addr)

0 1 2 3 4 5 6 7App peers

lnx adds addresses into shm and core providers’ AVs with
FI_AV_USER_ID which allows peer providers to report

the application fi_addrs in the CQ

core provider and
shm write

completions directly
into lnx owned CQ

and get receive
buffers from lnx

managed SRX

fi_cq_read() fi_recv()fi_send()

lnx decides if peer
is remote or local Imported

CQ
Imported

SRX

0(0) 1(1) 2(2) 3(3)

11 © OpenFabrics Alliance

SHARED COMPLETION QUEUE API

struct fi_ops_cq_owner {

ssize_t (*write)();

ssize_t (*writeerr)();

};

3. Peer calls imported
peer_cq->owner_ops in

order to write an entry to
the shared CQ

struct fid_peer_cq {

struct fid fid;

struct fi_ops_cq_owner *owner_ops;

};

struct fi_peer_cq_context {

struct fid_peer_cq *cq;

};

1. Owner allocates a peer cq and defines peer CQ write ops

2. Owner calls fi_cq_open, passing in the peer_cq via context
indicating a peer with attr->flags | FI_PEER

fi_cq_open(peer_domain, &attr, &peer_cq, peer_context);

12 © OpenFabrics Alliance

SHARED RECEIVE CONTEXT

struct fi_ops_srx_owner {

int (*get_msg)();

int (*get_tag)();

int (*queue_msg)();

int (*queue_tag)();

void (*free_entry)();

};

1. Owner creates peer_srx_context and sets owner ops

2. Owner imports SRX into peer by calling fi_srx_context
passing in the peer_cq via context indicating a peer with

attr->flags | FI_PEER. Peer sets peer_ops

Peer calls owner ops to get, queue, and free messages

struct fi_peer_srx_context {

struct fid_peer_srx *srx;

};

struct fid_peer_srx {

struct fid_ep ep_fid;

struct fi_ops_srx_owner *owner_ops;

struct fi_ops_srx_peer *peer_ops;

};

struct fi_ops_srx_peer {

int (*start_msg)();

int (*start_tag)();

int (*discard_msg)();

int (*discard_tag)();

};

Owner calls peer ops to start and discard unexpected messages

fi_srx_context(peer_domain, &attr, &srx_fid, peer_srx_context);

13 © OpenFabrics Alliance

EXAMPLE SRX FLOW

OWNER PEER

SRX

fi_srx_context()

fi_recv()

get_msg()

free_entry()

get_msg()

FI_ENOENT

queue_msg()

start_msg()

fi_recv()

free_entry()

msg

msg

THANK YOU
Alexia Ingerson

Intel Corporation

2023 OFA Virtual Workshop

OFI PROVIDER FOR COLLECTIVE OFFLOAD

Jianxin Xiong

Intel Corporation

2023 OFA Virtual Workshop

OFI COLLECTIVE API

▪ API summary

• Asynchronous

• Defined in <rdma/fi_collective.h>

• Supported ops: barrier, broadcast, alltoall, allreduce, allgather, reduce, reduce_scatter, scatter, gather

• Wrapper functions: fi_barrier(), fi_broadcast(), ……

• Collective groups: av_set

• A set of addresses (fi_addr_t) representing group members

• Can perform set operations: insert, remove, intersect, union, diff

• Similar to multicast group, join via the same fi_join() call, but with FI_COLLECTIVE flag

▪ Collective ops can be defined for each endpoint

struct fid_ep {

……

struct fi_ops_collective collective;

}

IMPLEMENTATION CONSIDERATIONS

▪ Goal: Efficiently enable multiple providers over multiple collective offload engines

• An example of offload engines is switch with collective support

▪ Option 1 -- fully independent implementations

• Each provider implements collective ops for each offload engine

• Pros: good separation between providers and between offload engines

• Cons: a lot of duplicated efforts

▪ Option 2 -- collective functions as utility code

• Pros: reduce code duplication

• Cons: utility code enforce common basic data structures (domain, ep, cq, etc) to be used by providers

▪ Peer-provider provides a better option

Provider A

Provider B

offload engine 1

offload engine 2

COLLECTIVE OFFLOAD WITH PEER PROVIDER

▪ Implement a collective-only provider for each offload engine

• Act as a peer provider to the “main” provider

• The main provider shares necessary data structure (domain, cq, eq, av, etc) via the peer-provider API

• Eliminate the needs of creating duplicated queues / tables

• The collective provider reports completions / events directly to the main provider

• Pros:

• Reduce code duplication

• Separation between the main provider and the offload provider – interface via peer-provider API only

• Cons:

• The provider-to-provider workflow must be coordinated and well-defined

provider A

provider B

offload provider 1

offload provider 2

offload engine 1

offload engine 2

DESIGN OVERVIEW

main provider collective provider

fabric

domain

cq

eq

av

ep

peer_cq

peer_eq

peer_av

peer_domain

cq

eq

av

ep

domain

fabric

peer_xfer

create

reference

collective_ops

av_set

fi_fabric()

fi_domain2()

fi_cq_open()

fi_eq_open()

fi_av_open()

fi_endpoint()

COLLECTIVE GROUP CREATION

Application Main provider Collective provider

fi_av_set() fi_av_set() av_ops.av_set()

av_set

comm

fi_av_set_addr() fi_av_set_addr() av_set_ops.addr()

coll_addr

av av

av_set

JOIN COLLECTIVE GROUP

Application Main provider Collective provider

fi_join_collective() fi_join() cm_ops.join()

mc

coll_addr av_set

schedule offload work

fi_eq_write()eqfi_eq_read

ret
completion

COLLECTIVE OPS

Application Main provider Collective provider

fi_barrier() fi_barrier() coll_ops.barrier()

op status

mc

schedule offload work

peer_cq.owner_ops.write()cqfi_cq_read

ret
completion

cq

BOOTSTRAP COLLECTIVE

▪ Offload collective engine may require a small set of out of band collectives for

bootstrapping. Can be implemented in the main provider using pt2pt communication

Main provider Collective provider

fi_barrier2(FI_PEER_XFER)

coll_ops.barrier(FI_PEER_XFER)

peer_xfer_ops.complete()

ret

status

UTILITY COLLECTIVE PROVIDER

▪ Pt2pt based collectives can be moved to its own provider

Util coll provider Main provider Offload coll provider

fi_barrier2(FI_PEER_XFER)
fi_barrier2()

coll_ops.barrier2()

send/recv(FI_PEER_XFER) send/recv

send/recv status

coll completion peer_xfer_ops.complete()

send/recv completionpeer_xfer_ops.complete()

bootstrap

CONCLUSION AND FUTURE WORK

▪ Peer provider provides a mechanism for implementing “functional” providers w/o

duplicating important data structures. Collective offload is one such function that suits

this model well

▪ As a proof-of-concept, a utility collective provider has been implemented to provide

software-based collective functionality.

• The rxm provider now uses this utility collective provider for default collective support instead of the old

“shared utility code” based implementation.

• Enables other providers to leverage the pt2pt based collective implementation more easily

▪ Future work will have offload collective provider(s) implemented for popular collective

offload engine(s). That’s when upper layer middleware can start taking advantage of

OFI collectives.

THANK YOU
Jianxin Xiong

Intel Corporation

2023 OFA Virtual Workshop

	Presentation
	Slide 1: libfabric Composability: Peer Provider Architecture
	Slide 2: libfabric Classic Architecture Illustrative Components
	Slide 3: Using Multiple Providers Example: Shared Memory + Network Provider
	Slide 4: Using Multiple Providers Complex, Theoretical Scenarios
	Slide 5: Using Multiple Providers Example: Shared Memory + Network Provider
	Slide 6
	Slide 7: Review: libfabric API
	Slide 8: Peer Object Model Sharable Fabric Identifiers (FIDs)
	Slide 9: THANK YOU
	Slide 10: Example - Owner: lnx
	Slide 11: Shared Completion queue api
	Slide 12: Shared receive context
	Slide 13: Example srx flow
	Slide 14: THANK YOU
	Slide 15: OFI PROVIDER For Collective Offload
	Slide 16: OFI Collective API
	Slide 17: Implementation Considerations
	Slide 18: Collective Offload with Peer Provider
	Slide 19: Design Overview
	Slide 20: Collective Group Creation
	Slide 21: Join Collective Group
	Slide 22: Collective Ops
	Slide 23: Bootstrap Collective
	Slide 24: Utility Collective Provider
	Slide 25: Conclusion and future work
	Slide 26: THANK YOU

