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libfabric Classic Architecture
Illustrative Components
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Using Multiple Providers
Example: Shared Memory + Network Provider
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Using Multiple Providers
Complex, Theoretical Scenarios
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Link Provider (Optional)

Using Multiple Providers
Example: Shared Memory + Network Provider

Legend
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Needed: efficient cooperation of 
independent providers

libfabric API

libfabric

SHM
Provider

Middleware
(MPI, oneCCL, oneSHMEM…)

Core

Provider API

Verbs 
Provider

App opens one provider, 
but has access to both

Peer API

Keep providers 
highly focused

Orchestration handled by 
core provider or (future) 

link provider

Once a provider is enabled for 
peer API support, can swap in 

another to its right or left

Peer APIs

Allow independent 
development

Easy for providers 
to adopt



Generically combining a half 
dozen independently 

developed providers without 
losing performance.  And, 

how, exactly, do you intend to 
accomplish this?



Review: libfabric API
Legend
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struct fid_ep {

…

struct fi_ops_msg *msg;

struct fi_ops_rma *rma;

…

};

static inline

fi_send(ep, buf, len, …)

{

return ep->msg->send(ep, …)

}

Example: active endpont

User invokes direct 
call on object

API defines user
interface to objects



Peer ProviderOwner Provider

Peer Object Model
Sharable Fabric Identifiers (FIDs)

Legend
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Conceptual example (details in next talks)
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THANK YOU

How many people even 
get this reference

Don’t change that dial!  
More details to follow!



10 © OpenFabrics Alliance

EXAMPLE - OWNER: LNX
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SHARED COMPLETION QUEUE API

struct fi_ops_cq_owner {

ssize_t (*write)();

ssize_t (*writeerr)();

};

3. Peer calls imported 
peer_cq->owner_ops in 

order to write an entry to 
the shared CQ

struct fid_peer_cq {

struct fid fid;

struct fi_ops_cq_owner *owner_ops;

};

struct fi_peer_cq_context {

struct fid_peer_cq *cq;

};

1. Owner allocates a peer cq and defines peer CQ write ops

2. Owner calls fi_cq_open, passing in the peer_cq via context 
indicating a peer with attr->flags | FI_PEER

fi_cq_open(peer_domain, &attr, &peer_cq, peer_context);
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SHARED  RECEIVE CONTEXT

struct fi_ops_srx_owner {

int (*get_msg)();

int (*get_tag)();

int (*queue_msg)();

int (*queue_tag)();

void (*free_entry)();

};

1. Owner creates peer_srx_context and sets owner ops

2. Owner imports SRX into peer by calling fi_srx_context
passing in the peer_cq via context indicating a peer with 

attr->flags | FI_PEER. Peer sets peer_ops

Peer calls owner ops to get, queue, and free messages

struct fi_peer_srx_context {

struct fid_peer_srx *srx;

};

struct fid_peer_srx {

struct fid_ep ep_fid;

struct fi_ops_srx_owner *owner_ops;

struct fi_ops_srx_peer *peer_ops;

};

struct fi_ops_srx_peer {

int (*start_msg)();

int (*start_tag)();

int (*discard_msg)();

int (*discard_tag)();

};

Owner calls peer ops to start and discard unexpected messages

fi_srx_context(peer_domain, &attr, &srx_fid, peer_srx_context);
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EXAMPLE SRX FLOW
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FI_ENOENT

queue_msg()

start_msg()

fi_recv()

free_entry()

msg

msg



THANK YOU
Alexia Ingerson

Intel Corporation

2023 OFA Virtual Workshop



OFI PROVIDER FOR COLLECTIVE OFFLOAD

Jianxin Xiong

Intel Corporation

2023 OFA Virtual Workshop



OFI COLLECTIVE API

▪ API summary

• Asynchronous

• Defined in  <rdma/fi_collective.h>

• Supported ops: barrier, broadcast, alltoall, allreduce, allgather, reduce, reduce_scatter, scatter, gather

• Wrapper functions: fi_barrier(), fi_broadcast(), ……

• Collective groups: av_set

• A set of addresses (fi_addr_t) representing group members

• Can perform set operations: insert, remove, intersect, union, diff 

• Similar to multicast group, join via the same fi_join() call, but with FI_COLLECTIVE flag 

▪ Collective ops can be defined for each endpoint

struct fid_ep {

……

struct fi_ops_collective collective;

}



IMPLEMENTATION CONSIDERATIONS

▪ Goal: Efficiently enable multiple providers over multiple collective offload engines

• An example of offload engines is switch with collective support

▪ Option 1 -- fully independent implementations

• Each provider implements collective ops for each offload engine

• Pros: good separation between providers and between offload engines

• Cons: a lot of duplicated efforts

▪ Option 2 -- collective functions as utility code

• Pros: reduce code duplication

• Cons: utility code enforce common basic data structures (domain, ep, cq, etc) to be used by providers

▪ Peer-provider provides a better option

Provider A

Provider B

offload engine 1

offload engine 2



COLLECTIVE OFFLOAD WITH PEER PROVIDER

▪ Implement a collective-only provider for each offload engine

• Act as a peer provider to the “main” provider

• The main provider shares necessary data structure (domain, cq, eq, av,  etc) via the peer-provider API

• Eliminate the needs of creating duplicated queues / tables

• The collective provider reports completions / events directly to the main provider

• Pros: 

• Reduce code duplication

• Separation between the main provider and the offload provider – interface via peer-provider API only

• Cons: 

• The provider-to-provider workflow must be coordinated and well-defined

provider A

provider B

offload provider 1

offload provider 2

offload engine 1

offload engine 2



DESIGN OVERVIEW
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COLLECTIVE GROUP CREATION

Application Main provider Collective provider

fi_av_set() fi_av_set() av_ops.av_set()

av_set

comm

fi_av_set_addr() fi_av_set_addr() av_set_ops.addr()

coll_addr

av av

av_set



JOIN COLLECTIVE GROUP

Application Main provider Collective provider

fi_join_collective() fi_join() cm_ops.join()

mc

coll_addr av_set

schedule offload work

fi_eq_write()eqfi_eq_read

ret
completion



COLLECTIVE OPS

Application Main provider Collective provider

fi_barrier() fi_barrier() coll_ops.barrier()

op status

mc

schedule offload work

peer_cq.owner_ops.write()cqfi_cq_read

ret
completion

cq



BOOTSTRAP COLLECTIVE

▪ Offload collective engine may require a small set of out of band collectives for 

bootstrapping. Can be implemented in the main provider using pt2pt communication

Main provider Collective provider

fi_barrier2(FI_PEER_XFER)

coll_ops.barrier(FI_PEER_XFER)

peer_xfer_ops.complete()

ret

status



UTILITY COLLECTIVE PROVIDER

▪ Pt2pt based collectives can be moved to its own provider

Util coll provider Main provider Offload coll provider

fi_barrier2(FI_PEER_XFER)
fi_barrier2()

coll_ops.barrier2()

send/recv(FI_PEER_XFER) send/recv

send/recv status

coll completion peer_xfer_ops.complete()

send/recv completionpeer_xfer_ops.complete()

bootstrap 



CONCLUSION AND FUTURE WORK

▪ Peer provider provides a mechanism for implementing “functional” providers w/o 

duplicating important data structures. Collective offload is one such function that suits 

this model well

▪ As a proof-of-concept, a utility collective provider has been implemented to provide 

software-based collective functionality. 

• The rxm provider now uses this utility collective provider for default collective support instead of the old 

“shared utility code” based implementation.

• Enables other providers to leverage the pt2pt based collective implementation more easily

▪ Future work will have offload collective provider(s) implemented for popular collective 

offload engine(s). That’s when upper layer middleware can start taking advantage of 

OFI collectives.
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