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Notices and Disclaimers



• What is Cornelis Networks?
• Omni-Path Architecture (OPA)
• Third year of talks in this workshop
• Spun out of Intel

• What is OPA?
• Low latency, high speed fabric interconnect
• Current 100Gbps
• Next gen 400Gbps, and beyond

• Who am I?
• Lead Kernel Development team at Cornelis Networks
• One of original developers of our (hfi1) driver technology
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Obligatory Intro Slide
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• Not about licenses
• I’m not a lawyer
• Everyone has personal and company-oriented views

• Not a discussion on hfi1 architecture
• Will talk about history of how it made it into the kernel

• Not strictly applicable to Cornelis Networks or hfi1
• Concepts apply to other drivers
• Concepts apply to other software as well
• Not a guide on upstreaming drivers rather a call to make it a priority

This talk is...



• Think we can skip the “Why Linux” discussion?

• Advancement of technology

• Benefit of thousands of people looking at your code

• Competitors actually work together for the common good

• This is the only way to make it into distros

• Customers want to know what code is being run

• It’s just easier on customers if they don’t need to install stuff

• Path to ubiquitousness
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Why Open Source?



• Kernel code is not yours anymore
• Community “owns” it

• Can’t toss whatever code you want in
• Ensures higher quality
• But some “features” may not be accepted

• I’ve got examples!

• Timeline is drawn out
• Kernel.org for instance follows a pretty steady cadence
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Drawbacks to Open Source
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• Customers want this

• Distros require it

• The community is HUGE

• When dealing with this community, companies...
• Need a way to get hot fixes to customers
• Need a way to deploy features not appropriate for kernel.org
• Need a way to issue debug/test code
• Need a way to follow their own release schedule

• How do we meet these requirements?

Why Kernel.org?
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• Upstream = Linux Kernel.org for my examples
• Could apply to libfabric, any other community driven project

• Note does not necessarily mean Upstream Only
• Would be an ideal model but not realistic for most things
• Mature products that aren’t changing or adding new features are easier

Follow Upstream First Principle



• Worst case
• Customer has a feature that we have 

to take away

• Best case
• Diverging code lines to deal with

• Either way quality suffers

• Customer experience not ideal

• Not fool proof
• Code can be accepted, and bugs found 

long after acceptance
• This is one of the advantages of OSS
• Goal is to catch problems early!
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If we don’t 
upstream first?...
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• Described what Open Source is and its pros/cons

• Talked about Upstream First and consequence of not doing it

• Next: Approaches to software release

Where are we now?



• Instead of working with code upstream
• Just make it a block box
• Maybe ship some stuff upstream

• No one knows if it is what customers run

• Get to release whatever you want

• Unfriendly to users

• Unfriendly to the community

• Does not better technology
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Black box approach



• Be open!

• Code goes to Kernel.org FIRST

• Code is posted to a public git repo
• After accepted at Kernel.org
• We use GitHub
• Lots of options out there

• The community may be smaller
• BUT – It’s there, people can see behind 

the curtain
• It is its own “upstream”

• Stuff going to customers 
• Accepted upstream first!
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A better way
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• Described what Open Source is and its pros/cons

• Talked about Upstream First and consequence of not doing it

• Covered two approaches to software release
• Should be clear which one is better

• Next: Dealing with code bases
• Kernel.org
• GitHub
• Distro

Where are we now?
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Open is great and the right way...



• For us: One code base with compat code for different distros

• Lots of #if-defs

• Maintain a single release stream
• As time marches on back port changes made to driver
• Backport goal is to work with distro kernels

• Usually current and one-back
• Backport work is HARD

• Especially when new APIs are introduced

• Still accomplishes the goal of being open and transparent

• This is what Intel IFS and early Cornelis OPXS did
• It works! It’s tried and true.
• Accomplishes our open source goals
• Gets the customer going with the distro they choose
• Maybe there is an even better way...
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Backport the world to one code base



• Applies to IFS or old OPXS
• Everything is totally different
• In-box distro driver VASTLY 

different than backport driver
• We must FULLY validate:

• Kernel.org
• Each Distro in-box
• Each Distro with IFS/OPXS

• A lot of validation
• More code = More risk
• Customers want it to “just work”
• We are duplicating work that 

distros are experts at
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Another way to look at the current state



• Let the distros do what they do

• Leverage distro code and add to it
• Diagnostics not suitable for upstream 
• Hot Fixes between distro releases

• Distro pulls code in from Kernel.org

• So, FEED Kernel.org our code!
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How we do better
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Ideally, the end result
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• Cornelis fully embraces upstream first development
• Not just lip service

• Validation effort and CI on upstream Kernel.org
• Upstreaming is not a side task it is THE task

• Validation early and often with Linux distros
• Helps to partner with distros to get early access for testing
• Ensures our drivers are fully vetted on each distro, BY THE TIME IT GA’s

What does it take?



• New technology is harder

• Must balance upstreaming code with keeping things secret
• Upstream what you can, when you can
• All parts of company must buy in to upstream first not just the ones writing the code

• With a good foundation in Kernel development and upstream process its possible
• Learn from previous stumbling bocks
• Companies need to prioritize experience in upstreaming code

• It is not go find engineers that can make the stuff

• It is go find engineers that can make the stuff and get it upstream

• Days of upstream development being a secondary or ancillary task are OVER

• Those who collaborate and work in the community prosper

• Those who choose to isolate will wither
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What about “new” stuff?



• Not really

• How many companies push out a software release every 8-10 weeks like clockwork?
• Not very many, but Linux does

• But the distros increase the lag
• Fair point, they do, but we have a path to provide hot fixes/updates

• If code is accepted it’s generally safe to flow into our release and code base

• Why? Because UPSTREAM FIRST!
• Recall: not upstream only

• And only those fixes/updates, does not need to be a full-blown new release

• Remember customers WANT the stableness of a distro
• Distros have z-stream and security updates regularly

• Severe issues we can appeal to distros

• Keep the flow of code going upstream, distros will pick it up 
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Doesn’t the kernel move slow?
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• Described what Open Source is and its pros/cons

• Talked about Upstream First and consequence of not doing it

• Covered two approaches to software release
• Should be clear which one is better

• Went over dealing with code bases (Kernel.org, distro, OPXS)

• Looked at how we do upstream first

• Next: Story Time

Where are we now?
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• hfi1 driver has been through a lot of ”change”

• started out as a literal copy of the qib driver (QLogic IB driver)
• similar HW, its a good framework, so why not? This isn’t the issue
• Problem: verbs code between qib and hfi1 is basically identical

• There is A LOT of verbs code, a lot
• Oh yeah also another copy in the ipath driver! So 3 copies!

• Upstream community had a pretty visceral reaction
• Partly due to competitive companies

• Things are VERY different today, kernel.org is a unique community

• However, there was a lot wrong with the driver
• TWSI, Multiple cdevs, snoop/capture, Register debug, etc....
• Point is we had a list, yes a literal list
• Made deal to excise that stuff and go to staging

• This was a HUGE headache and plagued us for years to come

hfi1: A story to not be repeated
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• We had brilliant engineers
• Amazing coders
• Knew the hardware in and out
• Expert knowledge of how to program in a kernel environment

• We did not have upstream expertise
• No one had upstreamed a driver before
• qib was grandfathered

• Lesson Learned (Companies pay attention): 
• You NEED people with exp in their community

• Must do the work and pay your dues

• You NEED to realize the importance of the upstream community
• Too often it is looked at as a side project

• Botom line: Needs to be a priority
• All too often it is not

Why?
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• Want to keep the stuff we cut... Hurray for IFS!!

• Now we have:
• distro drivers (but we are in staging so limited to tech-preview)
• upstream drivers
• IFS – tested, tried, and true, reliable workhorse

• This is the “supported” way
• Bells and whistles upstream doesn’t have

• Over time:
• Code diverges, 
• Upstream fixes bugs
• New APIs need reconciled
• In the exact position we don’t want to be in (see the previous slides!)

Circling back to Upstream First



© 2023 Cornelis Networks26

• Simple: We started doing upstream first

• A long time ago, in a conference room far, far away...
• (Ok like 8 years ago in King of Prussia, PA)

• Met with upper mgmt and convinced them this is the right course
• Explained how upstream first:

• Saves time
• Increases code quality
• Increases customer satisfaction
• Encourages growth of the technology

• There was some kicking and screaming
• In the end, we are in the right place going the right direction

How did hfi1 overcome?



• Open Source is key 

• Upstream First is the way forward
• Upstream first can work to

• Improve code quality
• Decrease time to market
• Keep customers happy

• Nothing is absolute
• May be times when upstream first just doesn’t work (CVE?)

• This should NOT be the goto and avoided at all costs
• It’s a goal

• Cornelis Networks is fully embracing Upstream First as a key part of our approach to openness

• Cornelis hfi1 driver development is a real-world example of upstream first development
• Other efforts following suit, like OPX and Libfabric

• More on that in the next talk
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Key Takeaways:



Thank You
www.cornelisnetworks.com
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