
Designing Networking Stacks for ML Frameworks
Raghu Raja

raghu@enfabrica.net

2023 OFA Virtual Workshop

Agenda

● Understanding Neural Networks

● Taxonomy of ML techniques

● New world, old problems - Design Challenges to consider

● Case study with NCCL

● Call to action

Neural Networks

16x16 Grid

Growth of Model Sizes

Taxonomy of Parallelization Techniques

● Data Parallelism

● Model Parallelism

● Fully Sharded Data Parallelism

● Tensor Parallelism

● Pipeline Parallelism

● Mixture-of-Experts (MoE)

● Framework-specific techniques

Data Parallelism

● Data Parallelism
◦ Same model across GPUs/compute elements
◦ Train each with different samples
◦ Stochastic Gradient Descent (SGD)

◦ Asynchronous

◦ Non-blocking across GPUs

◦ Parameter Server model

◦ Synchronous

◦ AllReduce (Sum) of gradients from all GPUs before updating model

◦ SGD with large mini-batch is the most common training model

● ~1.2B parameters

Model Parallelism

● Model Parallelism
◦ Distribute model across compute elements
◦ Given batch -> sequential progress across layers.

Same input batch fed to all GPUs.
◦ MPI-style tightly-couple communication

requirements
● Scaling limitations, 8-16 GPUs. ~20B parameters
● Hybrid MP+DP
● Pipeline parallelism. ~100B parameters
● Framework-specific techniques - ~1T+ parameters

Mixture of Experts

Zhi-Hua Zhou. 2012. Ensemble Methods: Foundations and Algorithms (1st. ed.). Chapman & Hall/CRC.

● Limited to encoder-decoder / sequence-to-sequence tasks

● Reduced compute requirements

● Increased memory requirements

● Reduced parameter efficiency

● Google Gshard, Switch Transformer, DeepSpeed-MoE

(MoS)

● Sub-linear scaling

Inference

● “Deploy” a model with learned weights and biases

● Strict SLAs: latency O(ms) and accuracy

● Deployment scale grows with user counts. High memory

requirements.

● LLM / DLRM: Parameters, embeddings, user contexts.

Role of Collective Communication

● Initial parameter distribution and batch setup: Broadcast

● Gradient descent: AllReduce w/average in the backward pass

● Synchronization: Barrier

● Fully Sharded Data Parallel: ReduceScatter + AllGather

● Mixture-of-Experts: 2 x AlltoAll forward pass, 2 x AlltoAll backward pass

The Proliferation of *CCLs
● MPI: The OG CCL
● NCCL: NVIDIA GPUs
● RCCL: For AMD GPUs, via ROCm Hip instead of CUDA
● oneCCL: For Intel Xe GPUs, via oneAPI (libfabric and friends)
● UCC: Collectives over UCX, draws from HCOLL, SHArP, IBM PAMI, etc
● MSCCL = TACCL + SCCL: Topology aware, GC3 DSL
● Alibaba ACCL
● MCR-DL: Mixing network backends
● Open XLA / HLO collectives
● Baidu’s allreduce
● Huawei UCG w/OpenMPI
● Xilinx ACCL: For Alveo FPGAs

Networking for ML: Design Challenges
● Plenty of FLOPS, oversubscribed and underutilized

● 800G ethernet is here. Networking bandwidth has caught up with memory bandwidth

● Link utilization and load balancing: Collectives → Incast issues → Congestion control

● But we also want faster collectives!

● Mosaic of L3/L4 transport design choices: message semantics, ordering constraints, etc

● Model sizes outgrowing accelerator HBM capacities

● Desire to build vendor-agnostic software stacks

● Managing complex system topologies across networking, compute, and storage.

System Architectures

Scale accelerators
Under-utilized cores

Expensive

Scale Hosts / CXL.mem
Oversubscribed PCIe BW
Performance Hit

CXL.mem

CXL
DRAM

GPU

HBM HBM

HBM

N
IC

RDMA

HBM

GPU

N
IC

RDMA

HBM HBM

CPU

DDR

N
IC

N
IC

RDMA

HBM

N
IC

RDMA

HBM

PC
Ie

 S
w

it
ch

es

HBM

N
IC

RDMA

HBM

CPU

DDR

N
IC

GPU

Front-end
Network

Back-end
Network

Front-end
Network

PC
Ie

 S
w

it
ch

es

Enfabrica - ACF-Switch

Pages

Packets

Pages

Pages

ECMP /
Port Group

Multi-
destination

Switch Compute Interfaces

Control
Plane

Buffer
Memory

Controller

Copy Engines

Switch Network Interfaces

An Incarnation of ACF-S

CXL
DRAM

CXL
DRAM

CXL
DRAM

CXL
DRAM

HBM HBM

HBM HBM

HBM HBM

GP
U
GP
UGPU

Front-end
Network

DDR

N
IC CPU

CXL.memCXL.mem

Back-end
Network

Multi-Terabit Network Fabric
N x 800 / 400 / 200 / 100 Gigabit Ethernet

Multi-Terabit Compute Fabric
High Fanout PCIe Gen5 / CXL 2.0+ / UCIe

blvd: NCCL Plugin and more

torch.distributed

Gloo MPI NCCL

torch.nn.parallel.DistributedDataParallel

blvd

IB Verbs

ncclCollNet_t

ncclNet_t -> irecv/isend

(See Shrijeet Mukherjee’s talk from earlier today for details: “RDMA and Linux TCP”)

blvd: Design Highlights

torch.distributed

Gloo MPI NCCL

torch.nn.parallel.DistributedDataParallel

blvd

IB Verbs

● Zero-copy from the app → NCCL → blvd → TCP → H/W
● Works with upstream kernel without needing custom hooks for

peer-to-peer communication
● librdmacm API for connection management. Standard libibverbs

APIs.
● Supports all NCCL PTR types: HOST, CUDA, DMABUF
● Message framing extensions
● Test vehicle to prove out ACF architectural concepts and

primitives
● Existing verbs plugin is not general enough. Non-standard

assumptions and custom hooks for P2P communication.

FPGA-based Emulation Platform

● AMD Ryzen motherboard
● Virtex UltraScale+ XCVU37P
● Xilinx PCIe Gen3 x16 lane (126Gbits/s) interface to the CPU
● 2 x PCIe Gen3 x16 lanes to the GPUs, limited to ~40Gbps
● 4 x 100G Ethernet CMACs with routing lookup BCAM
● Running unmodified 5.13.x kernel
● Purely an experimental platform

Evaluation Results

Evaluation Results

https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md

Next Steps

Scales in Horizontal slices for User Data Store

O(n) Cost Scaling w/ GPU, CPU

Hub-and-Spoke, Dynamic Dispatch of User Data

Enables horizontal slicing and much more …
O(log(n)) Dynamic Cost Scaling w/ GPU, CPU

Tiered, Equidistant Memory Latency

G
P
U

HBM HBM

G
P
U

HBMDDR

C
P
U

CXL
DRAM

CXL
DRAM

CXL
DRAM

CXL
DRAM

G
P
U

Back-end
Network

G
P
U

C
P
U

DDR

HBM

G
P
U

C
P
U

DDR

HBM

G
P
U

C
P
U

DDR

HBM

G
P
U

C
P
U

DDR

HBM

G
P
U

C
P
U

DDR

HBM

Call to Action

● For the *CCL builders and maintainers

◦ Better plugin interfaces that have an impedance match with hardware vendor efforts

◦ Allow more control over the topology management

◦ Better documentation of design choices in addition to user/admin guides

● For the OFA community

◦ Co-design ML stacks, beyond writing plugins.

◦ More active involvement in ML framework development communities

● For the HPC community: Come up with better names for designs! /s

Thank You.
Questions, comments, or collaboration:

raghu@enfabrica.net + hello@enfabrica.net

mailto:raghu@enfabrica.net
mailto:hello@enfabrica.net

