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Agenda
● Understanding Neural Networks

● Taxonomy of ML techniques

● New world, old problems - Design Challenges to consider

● Case study with NCCL

● Call to action



Neural Networks



Growth of Model Sizes



Taxonomy of ML Techniques
● Data Parallelism

◦ Same model across GPUs/compute elements
◦ Train each with different samples
◦ Stochastic Gradient Descent (SGD)

◦ Asynchronous
◦ Synchronous

● Model Parallelism
◦ Distribute dataset across GPUs/compute elements
◦ Tightly-coupled network communication

● Fully Sharded Data Parallelism
● Tensor Parallelism
● Pipeline Parallelism
● Mixture-of-Experts (MoE)
● Framework-specific techniques



Data Parallelism

● Data Parallelism
◦ Same model across GPUs/compute elements
◦ Train each with different samples
◦ Stochastic Gradient Descent (SGD)

◦ Asynchronous

◦ Non-blocking across GPUs

◦ Parameter Server model

◦ Synchronous

◦ AllReduce (Sum) of gradients from all GPUs before updating model

◦ SGD with large mini-batch is the most common training model

● ~1.2B parameters



Model Parallelism

● Model Parallelism
◦ Distribute model across compute elements
◦ Given batch -> sequential progress across layers. 

Same input batch fed to all GPUs.
◦ MPI-style tightly-couple communication 

requirements
● Scaling limitations, 8-16 GPUs. ~20B parameters
● Hybrid MP+DP
● Pipeline parallelism. ~100B parameters
● Framework-specific techniques - ~1T parameters



Mixture of Experts

Zhi-Hua Zhou. 2012. Ensemble Methods: Foundations and Algorithms (1st. ed.). Chapman & Hall/CRC.

● Limited to encoder-decoder / sequence-to-sequence tasks

● Reduced compute requirements

● Increased memory requirements

● Reduced parameter efficiency

● Google Gshard, Switch Transformer, DeepSpeed-MoE 

(MoS)

● Sub-linear scaling



Inference

● “Deploy” a model with learned weights and biases

● Strict SLAs: latency O(ms) and accuracy

● Deployment scale grows with user counts. High memory 

requirements.

● LLM / DLRM: Parameters, embeddings, user contexts.



Role of Collective Communication
● Initial parameter distribution and batch setup: Broadcast

● Gradient descent: AllReduce w/average in the backward pass

● Synchronization: Barrier

● Fully Sharded Data Parallel: ReduceScatter + AllGather

● Mixture-of-Experts: 2 x AlltoAll forward pass, 2 x AlltoAll backward pass



The Proliferation of *CCLs
● MPI: The OG CCL
● NCCL: NVIDIA GPUs
● RCCL: For AMD GPUs, via ROCm Hip instead of CUDA
● oneCCL: For Intel Xe GPUs, via oneAPI (libfabric and friends)
● UCC: Collectives over UCX, draws from HCOLL, SHArP, IBM PAMI, etc
● MSCCL = TACCL + SCCL: Topology aware, GC3 DSL
● Alibaba ACCL
● MCR-DL: Mixing network backends
● Open XLA / HLO collectives
● Baidu’s allreduce
● Huawei UCG w/OpenMPI
● Xilinx ACCL: For Alveo FPGAs



Networking for ML: Design Challenges
● 800G ethernet is here. Networking bandwidth has caught up with memory bandwidth

● Link utilization and load balancing: Collectives → Incast issues → Congestion control. 

● Mosaic of L3 transport design choices: message semantics, ordering constraints, etc

● Model sizes outgrowing accelerator HBM capacities

● Desire to build vendor-agnostic software stacks

● Managing complex system topologies across networking, compute, and storage.



System Architectures
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Enfabrica - ACF-Switch
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An Incarnation
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FPGA-based Emulation Platform

● AMD Ryzen motherboard
● Virtex UltraScale+  XCVU37P
● Xilinx PCIe Gen3 x16 lane (126Gbits/s) interface to the CPU
● 2 x PCIe Gen3 x16 lanes to the GPUs, limited to ~40Gbps
● 4 x 100G Ethernet CMACs with routing lookup BCAM
● Purely an experimental platform



blvd: NCCL Plugin

torch.distributed

Gloo MPI NCCL

torch.nn.parallel.DistributedDataParallel

blvd

IB Verbs

ncclCollNet_t 

ncclNet_t -> irecv/isend

(See Shrijeet Mukherjee’s talk from earlier today for details: “RDMA and Linux TCP”)



Evaluation Results

FPGA Limit



Evaluation Results



Call to Action

● For the *CCL builders and maintainers

◦ Better plugin interfaces that have an impedance match with hardware vendor efforts

◦ Allow more control over the topology management

◦ Better documentation of internal workings in addition to user/admin guides

● For the OFA community

◦ Co-design ML stacks, beyond writing plugins. 

◦ More active involvement in ML framework development communities

● For the HPC community: Come up with better names for designs! /s



Thank You.
Questions, comments, or collaboration:

raghu@enfabrica.net + hello@enfabrica.net
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