
OPEN FABRIC INTERFACE 2.0 UPDATE

Jianxin Xiong

Intel Corporation

2024 OFA Virtual Workshop

OUTLINE

2 © OpenFabrics Alliance

Introduction

Proposed OFI 2.0 Changes

Timeline

OFI Features OFI Architecture

 Enable advanced fabric features

• Optimized software paths

• OS bypass

• Zero-copy transfers

• Minimized memory footprint

 Fabric portability

• Single API, many providers

• Implementation flexibility for providers

• Capability discovery at runtime

OFI (LIBFABRIC) IN A NUTSHELL

© OpenFabrics Alliance3

prov provcore

msg tagged

rma atomics

collectives

discovery cm
API

data transfer

cq

eq

cntr

compcontrol

av

comm

Impl
utils

fabric

domain

mr

ep

…

Providers Timeline

 Initial libfabric commit: Nov 7, 2013

 libfabric v1.0.0: Apr 6, 2016

 libfabric v1.21.0 (the latest): Mar 29, 2024
• 55 releases in total, feature + bug fix

 major new features since v1.0.0
• Authorization keys, multicast, FI_ADDR_STR,

FI_LOCAL_COMM, FI_REMOTE_COMM,
FI_HMEM, FI_CONTEXT2, new MR mode bits,
FI_RMA_PMEM, NIC attributes, collectives

 middleware
• Intel MPI, OpenMPI, MPICH, SHMEM, GASNet,

Charm++, oneCCL, NCCL, DAOS, ……

THE SUCCESS OF GROWTH

© OpenFabrics Alliance4

cxicxi efaefa opxopx psm2psm2

psm3psm3 shmshm

tcptcp udpudp ucxucx verbsverbs

psmpsm socketssockets usnicusnic verbsverbs

usnicusnic

socketssockets

v1.0.0

v1.21.0

rxmrxmrxdrxd

ABI 1.0

ABI 1.7

hookhook

WHY 2.0?

 We have been able to maintain API and ABI backward compatibility so far
• API: existing application source should be able to compile against newer libfabric headers & libraries and run
• ABI: existing application binary should be able to run with newer libfabric libraries
• This is possible because:

• API changes are always “appending”, never “removing” or “reordering”
• ABI compatibility stubs are used to do runtime data-structure / parameter conversion

 Bumping the version to 2.0 allows making changes that breaks API/ABI compatibility
• Simplification:

• remove rare used / hard to use features / options
• present easier to understand interface to the user

• Optimization:
• allow more efficient provider implementation

• New features:
• Add new API: doesn’t break API
• Redefine existing API: may or may not break API

5 © OpenFabrics Alliance

We still want to maintain ABI
backward compatibility for

features carried over from 1.x!

PROPOSED 2.0 CHANGES

 Simplification
• Remove asynchronous AV insertion (rarely used)

• Remove FI_AV_MAP support

• Remove FI_THREAD_FID and
FI_THREAD_ENDPOINT (hard to use)

• Consolidate control progress and data progress

• Remove comp_order attributes (rarely supported)

• Remove total_buffered_recv field (deprecated)

• Remove fid_wait and fid_poll (reduce complexity)

• Remove FI_WAIT_MUTEX_COND (unimplemented)

• Remove FI_MR_BASIC, FI_MR_SCALABLE and
FI_LOCAL_MR (deprecated)

• Remove asynchronous MR registration (unused)

6 © OpenFabrics Alliance

 Optimization
• Restrict an endpoint to a single CQ (more efficient

progress)

• fi_log: new levels, redefine subsys

• Separate FI_DIRECTED_RECV bits for msg & tagged

• Refined FI_HMEM capabilities

• Refined inject size and max size for different ops

 New features
• Add new fi_fabric2 call (consistent fi_info parameter)

• Add new FI_ATOMIC_DIFF op

• Add new atomic data types FI_BFLOAT16,
FI_FLOAT16

• Add new peer group feature

• Define new tag formats

Remove asynchronous AV insertion Remove FI_AV_MAP support

 Currently behavior:

• when fi_av_open() is called with FI_EVENT flag,
insertion on the resulting AV will be asynchronous.

• The feature is rarely used while makes the
implementation more complicated.

 Proposed change:

• Remove the feature

 Proposed change:
• Keep the FI_AV_MAP enum value

• Make FI_AV_MAP behave the same as
FI_AV_TABLE

 The change is only visible to the
provider
• Application can continue to use FI_AV_MAP w/o

noticing the difference

 The purpose is to free up some bits in
fi_addr_t
• See the peer group feature

OFI 2.0 CHANGES (1~2): ADDRESS VECTOR

© OpenFabrics Alliance7

Simplify threading models Consolidate progress models

 Proposed change:

• Remove FI_THREAD_FID and
FI_THREAD_ENDPOINT

• Keep FI_THREAD_SAFE, FI_THREAD_DOMAIN,
FI_THREAD_COMPLETION

• Recommend FI_THREAD_DOMAIN for multi-thread
app with regular endpoint

• Recommend FI_THREAD_COMPLETION for multi-
thread app with scalable endpoint

 Reason

• The removed threading models are hard to use due
to the complexity associated with the completion
structure

 Proposed change (domain_attr):

 Reason
• applications usually set them to be the same
• providers usually use data_progress to determine its

behavior

OFI 2.0 CHANGES (3~4): THREADING MODEL & PROGRESS

© OpenFabrics Alliance8

enum fi_progress control_progress;
enum fi_progress data_progress;

enum fi_progress control_progress; // unused

};

enum fi_progress control_progress; // unused
union {

enum fi_progress data_progress;
enum fi_progress progress;

};

Remove comp_order attributes Remove total_buffered_recv field

 Proposed change:

• Remvoe the use of fi_tx_attr->comp_order and
fi_tx_attr->comp_order attributes man pages and
code

• Keep the field in the structures for backward
compatibility

 Reason

• Most hardware don’t support in-order completion
(only IB Verbs does)

• Application don’t need this, either.

 Proposed change:
• Remove the use of fi_rx_attr->total_buffered_recv

from man pages and code

• Keep the field in the structure for backward
compatibility

 Reason
• The field has already been deprecated

• Even today, it’s a hint only. A provider can choose to
ignore it.

OFI 2.0 CHANGES (5~6): TX & RX ATTRIBUTES

© OpenFabrics Alliance9

Remove fid_wait and fid_poll Remove FI_WAIT_MUTEX_COND

 Wait set / poll set allows aggregating
multiple wait objects into one

 Proposed change:

• Remove fid_wait (wait set) and fid_poll (poll set) from
the API

 Reason:

• Supporting these adds complexity to the provider
implementation

• Can get the wait object and use native poll / epoll
directly instead

 Proposed change:
• Remove the wait object type

FI_WAIT_MUTEXT_COND

 Reason:
• It’s not implemented by any provider

OFI 2.0 CHANGES (7~8): WAIT SET & POLL SET

© OpenFabrics Alliance10

Remove deprecated MR modes Remove asynchronous MR registration

 Proposed change:

• Remove FI_MR_BASIC, FI_MR_SCALABLE and
FI_LOCAL_MR

 Reason:

• These MR modes are for compatibility with libfabric
versions older than v1.5

• They have been deprecated for a long time

 Current behavior:
• Binding an event queue to a domain with

FI_MR_REG flag causes all memory registration on
this domain to be asynchronous

 Proposed change:
• Remove this option. Make memory registration to be

always synchronous

 Reason:
• No native support

• Complicate the implementation

OFI 2.0 CHANGES (9~10): MEMORY REGION

© OpenFabrics Alliance11

Restrict an endpoint to one CQ Refine fi_log

 Current Behavior:

• An endpoint can bind different CQs for send and recv
context

 Proposed change:

• An endpoint can only bind to one CQ

 Reason:

• The change simplifies both application and provider
logic for making progress

• There is no hard reason to use separate CQ

 Proposed change:
• Redefine subsys as a flag

• Add a new log level (FI_LOG_ERROR), and maybe
a level between FI_LOG_INFO and FI_LOG_DEBUG

 Reason”
• subsys is seldom used, changing to flag simplifies

the filter logic and allows future extension

• New log levels are needed for finer control on the
verbose level

OFI 2.0 CHANGES (11~12): CQ AND FI_LOG

© OpenFabrics Alliance12

Separate FI_DIRECTED_RECV for msg &tagged Refined FI_HMEM capabilities

 Proposed change:

• Add new capability bits for FI_DIRECTED_RECV for
msg and tagged ops.

• Keep the current one to cover both

 Reason:

• Providers may only support the capability for one
type of the ops

 Proposed change:
• Add hmem_attr to fi_info.

OFI 2.0 CHANGES (13~14): CAP BITS

© OpenFabrics Alliance13

struct fi_hmem_attr {
char *name;
enum fi_hmem_iface iface;
bool dmabuf_reg;
bool gdr_copy;
bool async_copy;

};

struct fi_info {
……
struct fi_hmem_attr *hmem_attr;

}

Refined inject size for ops Refined max size for ops

 Current behavior

• The single tx_attr->inject_size covers all ops (msg,
tagged, rma)

 Proposed change

• Add query method to fi_tagged_ops, fi_msg_ops,
and fi_rma_ops which will return inject size as part of
the result

• The API call will be fi_query_msg, fi_query_tagged,
and fi_query_rma.

 Current behavior:
• ep_attr->max_msg_size set the transport limit

• atomics and collectives have their own size limits that
can be queried by fi_query_atomic and
fi_query_collective

• msg, tagged, and rma may have different limit by
there is no way to know

 Proposed change:
• Use the same query method for the inject size to get

the max size at the same time.

OFI 2.0 CHANGES (15~16): OP SIZES

© OpenFabrics Alliance14

Require fi_info be allocated with API Add fi_fabric2

 Current behavior:

• fi_info can be hand crafted

 Proposed change:

• Require that fi_info should be allocated by
fi_alloc_info() or fi_dupinfo() or be returned from
fi_getinfo().

 Reason:

• allow the library to allocate hidden fields for internal
use

 Current behavior:

 Proposed change:

 Reason:
• Consistent interface as other open calls
• Get access to other info not available in fabric_attr

OFI 2.0 CHANGES (17~18): FI_FABRIC

© OpenFabrics Alliance15

int fi_fabric(struct fi_fabric_attr *attr,
struct fid_fabric **fabric,
void *context);

int fi_fabric2(struct fi_info *info,
struct fid_fabric **fabric,
uint64_t flags,
void *context);

New atomic op FI_ATOMIC_DIFF New atomic data types FI_BFLOAT16 &
FI_FLOAT16

 Proposed change:

• Add a new atomic op FI_ATOMIC_DIFF, which
performance the operation (target = target – source)

 Reason:

• This is a useful operation that may be supported by
some hardware

 Proposed change:
• Add new atomic data types FI_BFLOAT16 and

FI_FLOAT16

 Reason:
• These are data types used in AI/ML applications

OFI 2.0 CHANGES (19~20): ATOMICS

© OpenFabrics Alliance16

OFI 2.0 CHANGES (21): PEER GROUP

 Peer group maps to “communicator” concept of HPC and AI applications
 Peer groups are identified as integer “group id”, which are then embedded into high

bits of “fi_addr_t”, with the help of a new function:

 The group id is chosen by the user, between 0 and domain_attr->max_group_id.
 Peer group support:

• Request by setting hints->domain_attr->max_group_id to non-zero
• Check fi_info->domain_attr->max_group_id for provider support

• fi_getinfo() may fail if asked for too many
• May get more than asked for

 Benefit:
• Free up tag bits that might have been used by communicator id
• Increase the effectiveness of tag hashing for improved tag matching performance

17 © OpenFabrics Alliance

fi_addr_t fi_group_addr(fi_addr_t fi_addr, uint32_t group_id);

OFI 2.0 CHANGES (22): NEW TAG FORMAT

 Current behavior:
• ep_attr->mem_tag_format is a bit map with alternating segments of 0’s and 1’s, representing different semantic

fields in the tag.

• hard to use

 Proposed change:
• Use the lower bits to define a set of “well-known” tag usage models

 Benefits
• Allow providers to optimize tag-matching algorithm

18 © OpenFabrics Alliance

FI_TAG_CCLFI_TAG_MPIFI_TAG_BITSTag format

64-bit payload id32-bit tag + 32-bit payload id64-bit tagsTag layout

Exact match onlyAllow wildcardAllow wildcardMatching

Direct setfi_tag_mpi(tag, payload_id)Direct setTag setting

0FI_MPI_IGNORE_TAG, FI_MPI_IGNORE_PAYLOADDirect setIgnore bits

0xFFFF0000FFFF0000: four 16-bit fields

TIMELINE

 A longer release cycle for the first 2.0 release

 What to expect at each stage
• 2.0 alpha: mostly feature complete

• 2.0 beta: feature complete and validated

• 2.0 GA: issues discovered after beta fixed

 What about 1.x releases
• The libfabric “main” branch is for 2.0 development

• The 1.x development continues on the “v1.x-main” branch

• There will be two more feature releases for the 1.x series this year: 1.22 in July and 1.23 in Nov

• There may be some bug fix releases as well

19 © OpenFabrics Alliance

2.0.0 GA2.0.0 beta2.0.0 alpha

Nov 2024Sept 2024July 2024

THANK YOU
Jianxin Xiong

Intel Corporation

2024 OFA Virtual Workshop

