
OPEN FABRIC INTERFACE 2.0 UPDATE

Jianxin Xiong

Intel Corporation

2024 OFA Virtual Workshop

OUTLINE

2 © OpenFabrics Alliance

Introduction

Proposed OFI 2.0 Changes

Timeline

OFI Features OFI Architecture

 Enable advanced fabric features

• Optimized software paths

• OS bypass

• Zero-copy transfers

• Minimized memory footprint

 Fabric portability

• Single API, many providers

• Implementation flexibility for providers

• Capability discovery at runtime

OFI (LIBFABRIC) IN A NUTSHELL

© OpenFabrics Alliance3

prov provcore

msg tagged

rma atomics

collectives

discovery cm
API

data transfer

cq

eq

cntr

compcontrol

av

comm

Impl
utils

fabric

domain

mr

ep

…

Providers Timeline

 Initial libfabric commit: Nov 7, 2013

 libfabric v1.0.0: Apr 6, 2016

 libfabric v1.21.0 (the latest): Mar 29, 2024
• 55 releases in total, feature + bug fix

 major new features since v1.0.0
• Authorization keys, multicast, FI_ADDR_STR,

FI_LOCAL_COMM, FI_REMOTE_COMM,
FI_HMEM, FI_CONTEXT2, new MR mode bits,
FI_RMA_PMEM, NIC attributes, collectives

 middleware
• Intel MPI, OpenMPI, MPICH, SHMEM, GASNet,

Charm++, oneCCL, NCCL, DAOS, ……

THE SUCCESS OF GROWTH

© OpenFabrics Alliance4

cxicxi efaefa opxopx psm2psm2

psm3psm3 shmshm

tcptcp udpudp ucxucx verbsverbs

psmpsm socketssockets usnicusnic verbsverbs

usnicusnic

socketssockets

v1.0.0

v1.21.0

rxmrxmrxdrxd

ABI 1.0

ABI 1.7

hookhook

WHY 2.0?

 We have been able to maintain API and ABI backward compatibility so far
• API: existing application source should be able to compile against newer libfabric headers & libraries and run
• ABI: existing application binary should be able to run with newer libfabric libraries
• This is possible because:

• API changes are always “appending”, never “removing” or “reordering”
• ABI compatibility stubs are used to do runtime data-structure / parameter conversion

 Bumping the version to 2.0 allows making changes that breaks API/ABI compatibility
• Simplification:

• remove rare used / hard to use features / options
• present easier to understand interface to the user

• Optimization:
• allow more efficient provider implementation

• New features:
• Add new API: doesn’t break API
• Redefine existing API: may or may not break API

5 © OpenFabrics Alliance

We still want to maintain ABI
backward compatibility for

features carried over from 1.x!

PROPOSED 2.0 CHANGES

 Simplification
• Remove asynchronous AV insertion (rarely used)

• Remove FI_AV_MAP support

• Remove FI_THREAD_FID and
FI_THREAD_ENDPOINT (hard to use)

• Consolidate control progress and data progress

• Remove comp_order attributes (rarely supported)

• Remove total_buffered_recv field (deprecated)

• Remove fid_wait and fid_poll (reduce complexity)

• Remove FI_WAIT_MUTEX_COND (unimplemented)

• Remove FI_MR_BASIC, FI_MR_SCALABLE and
FI_LOCAL_MR (deprecated)

• Remove asynchronous MR registration (unused)

6 © OpenFabrics Alliance

 Optimization
• Restrict an endpoint to a single CQ (more efficient

progress)

• fi_log: new levels, redefine subsys

• Separate FI_DIRECTED_RECV bits for msg & tagged

• Refined FI_HMEM capabilities

• Refined inject size and max size for different ops

 New features
• Add new fi_fabric2 call (consistent fi_info parameter)

• Add new FI_ATOMIC_DIFF op

• Add new atomic data types FI_BFLOAT16,
FI_FLOAT16

• Add new peer group feature

• Define new tag formats

Remove asynchronous AV insertion Remove FI_AV_MAP support

 Currently behavior:

• when fi_av_open() is called with FI_EVENT flag,
insertion on the resulting AV will be asynchronous.

• The feature is rarely used while makes the
implementation more complicated.

 Proposed change:

• Remove the feature

 Proposed change:
• Keep the FI_AV_MAP enum value

• Make FI_AV_MAP behave the same as
FI_AV_TABLE

 The change is only visible to the
provider
• Application can continue to use FI_AV_MAP w/o

noticing the difference

 The purpose is to free up some bits in
fi_addr_t
• See the peer group feature

OFI 2.0 CHANGES (1~2): ADDRESS VECTOR

© OpenFabrics Alliance7

Simplify threading models Consolidate progress models

 Proposed change:

• Remove FI_THREAD_FID and
FI_THREAD_ENDPOINT

• Keep FI_THREAD_SAFE, FI_THREAD_DOMAIN,
FI_THREAD_COMPLETION

• Recommend FI_THREAD_DOMAIN for multi-thread
app with regular endpoint

• Recommend FI_THREAD_COMPLETION for multi-
thread app with scalable endpoint

 Reason

• The removed threading models are hard to use due
to the complexity associated with the completion
structure

 Proposed change (domain_attr):

 Reason
• applications usually set them to be the same
• providers usually use data_progress to determine its

behavior

OFI 2.0 CHANGES (3~4): THREADING MODEL & PROGRESS

© OpenFabrics Alliance8

enum fi_progress control_progress;
enum fi_progress data_progress;

enum fi_progress control_progress; // unused

};

enum fi_progress control_progress; // unused
union {

enum fi_progress data_progress;
enum fi_progress progress;

};

Remove comp_order attributes Remove total_buffered_recv field

 Proposed change:

• Remvoe the use of fi_tx_attr->comp_order and
fi_tx_attr->comp_order attributes man pages and
code

• Keep the field in the structures for backward
compatibility

 Reason

• Most hardware don’t support in-order completion
(only IB Verbs does)

• Application don’t need this, either.

 Proposed change:
• Remove the use of fi_rx_attr->total_buffered_recv

from man pages and code

• Keep the field in the structure for backward
compatibility

 Reason
• The field has already been deprecated

• Even today, it’s a hint only. A provider can choose to
ignore it.

OFI 2.0 CHANGES (5~6): TX & RX ATTRIBUTES

© OpenFabrics Alliance9

Remove fid_wait and fid_poll Remove FI_WAIT_MUTEX_COND

 Wait set / poll set allows aggregating
multiple wait objects into one

 Proposed change:

• Remove fid_wait (wait set) and fid_poll (poll set) from
the API

 Reason:

• Supporting these adds complexity to the provider
implementation

• Can get the wait object and use native poll / epoll
directly instead

 Proposed change:
• Remove the wait object type

FI_WAIT_MUTEXT_COND

 Reason:
• It’s not implemented by any provider

OFI 2.0 CHANGES (7~8): WAIT SET & POLL SET

© OpenFabrics Alliance10

Remove deprecated MR modes Remove asynchronous MR registration

 Proposed change:

• Remove FI_MR_BASIC, FI_MR_SCALABLE and
FI_LOCAL_MR

 Reason:

• These MR modes are for compatibility with libfabric
versions older than v1.5

• They have been deprecated for a long time

 Current behavior:
• Binding an event queue to a domain with

FI_MR_REG flag causes all memory registration on
this domain to be asynchronous

 Proposed change:
• Remove this option. Make memory registration to be

always synchronous

 Reason:
• No native support

• Complicate the implementation

OFI 2.0 CHANGES (9~10): MEMORY REGION

© OpenFabrics Alliance11

Restrict an endpoint to one CQ Refine fi_log

 Current Behavior:

• An endpoint can bind different CQs for send and recv
context

 Proposed change:

• An endpoint can only bind to one CQ

 Reason:

• The change simplifies both application and provider
logic for making progress

• There is no hard reason to use separate CQ

 Proposed change:
• Redefine subsys as a flag

• Add a new log level (FI_LOG_ERROR), and maybe
a level between FI_LOG_INFO and FI_LOG_DEBUG

 Reason”
• subsys is seldom used, changing to flag simplifies

the filter logic and allows future extension

• New log levels are needed for finer control on the
verbose level

OFI 2.0 CHANGES (11~12): CQ AND FI_LOG

© OpenFabrics Alliance12

Separate FI_DIRECTED_RECV for msg &tagged Refined FI_HMEM capabilities

 Proposed change:

• Add new capability bits for FI_DIRECTED_RECV for
msg and tagged ops.

• Keep the current one to cover both

 Reason:

• Providers may only support the capability for one
type of the ops

 Proposed change:
• Add hmem_attr to fi_info.

OFI 2.0 CHANGES (13~14): CAP BITS

© OpenFabrics Alliance13

struct fi_hmem_attr {
char *name;
enum fi_hmem_iface iface;
bool dmabuf_reg;
bool gdr_copy;
bool async_copy;

};

struct fi_info {
……
struct fi_hmem_attr *hmem_attr;

}

Refined inject size for ops Refined max size for ops

 Current behavior

• The single tx_attr->inject_size covers all ops (msg,
tagged, rma)

 Proposed change

• Add query method to fi_tagged_ops, fi_msg_ops,
and fi_rma_ops which will return inject size as part of
the result

• The API call will be fi_query_msg, fi_query_tagged,
and fi_query_rma.

 Current behavior:
• ep_attr->max_msg_size set the transport limit

• atomics and collectives have their own size limits that
can be queried by fi_query_atomic and
fi_query_collective

• msg, tagged, and rma may have different limit by
there is no way to know

 Proposed change:
• Use the same query method for the inject size to get

the max size at the same time.

OFI 2.0 CHANGES (15~16): OP SIZES

© OpenFabrics Alliance14

Require fi_info be allocated with API Add fi_fabric2

 Current behavior:

• fi_info can be hand crafted

 Proposed change:

• Require that fi_info should be allocated by
fi_alloc_info() or fi_dupinfo() or be returned from
fi_getinfo().

 Reason:

• allow the library to allocate hidden fields for internal
use

 Current behavior:

 Proposed change:

 Reason:
• Consistent interface as other open calls
• Get access to other info not available in fabric_attr

OFI 2.0 CHANGES (17~18): FI_FABRIC

© OpenFabrics Alliance15

int fi_fabric(struct fi_fabric_attr *attr,
struct fid_fabric **fabric,
void *context);

int fi_fabric2(struct fi_info *info,
struct fid_fabric **fabric,
uint64_t flags,
void *context);

New atomic op FI_ATOMIC_DIFF New atomic data types FI_BFLOAT16 &
FI_FLOAT16

 Proposed change:

• Add a new atomic op FI_ATOMIC_DIFF, which
performance the operation (target = target – source)

 Reason:

• This is a useful operation that may be supported by
some hardware

 Proposed change:
• Add new atomic data types FI_BFLOAT16 and

FI_FLOAT16

 Reason:
• These are data types used in AI/ML applications

OFI 2.0 CHANGES (19~20): ATOMICS

© OpenFabrics Alliance16

OFI 2.0 CHANGES (21): PEER GROUP

 Peer group maps to “communicator” concept of HPC and AI applications
 Peer groups are identified as integer “group id”, which are then embedded into high

bits of “fi_addr_t”, with the help of a new function:

 The group id is chosen by the user, between 0 and domain_attr->max_group_id.
 Peer group support:

• Request by setting hints->domain_attr->max_group_id to non-zero
• Check fi_info->domain_attr->max_group_id for provider support

• fi_getinfo() may fail if asked for too many
• May get more than asked for

 Benefit:
• Free up tag bits that might have been used by communicator id
• Increase the effectiveness of tag hashing for improved tag matching performance

17 © OpenFabrics Alliance

fi_addr_t fi_group_addr(fi_addr_t fi_addr, uint32_t group_id);

OFI 2.0 CHANGES (22): NEW TAG FORMAT

 Current behavior:
• ep_attr->mem_tag_format is a bit map with alternating segments of 0’s and 1’s, representing different semantic

fields in the tag.

• hard to use

 Proposed change:
• Use the lower bits to define a set of “well-known” tag usage models

 Benefits
• Allow providers to optimize tag-matching algorithm

18 © OpenFabrics Alliance

FI_TAG_CCLFI_TAG_MPIFI_TAG_BITSTag format

64-bit payload id32-bit tag + 32-bit payload id64-bit tagsTag layout

Exact match onlyAllow wildcardAllow wildcardMatching

Direct setfi_tag_mpi(tag, payload_id)Direct setTag setting

0FI_MPI_IGNORE_TAG, FI_MPI_IGNORE_PAYLOADDirect setIgnore bits

0xFFFF0000FFFF0000: four 16-bit fields

TIMELINE

 A longer release cycle for the first 2.0 release

 What to expect at each stage
• 2.0 alpha: mostly feature complete

• 2.0 beta: feature complete and validated

• 2.0 GA: issues discovered after beta fixed

 What about 1.x releases
• The libfabric “main” branch is for 2.0 development

• The 1.x development continues on the “v1.x-main” branch

• There will be two more feature releases for the 1.x series this year: 1.22 in July and 1.23 in Nov

• There may be some bug fix releases as well

19 © OpenFabrics Alliance

2.0.0 GA2.0.0 beta2.0.0 alpha

Nov 2024Sept 2024July 2024

THANK YOU
Jianxin Xiong

Intel Corporation

2024 OFA Virtual Workshop

