
[Public]

RecoNIC: RDMA-enabled Compute Offloading

on FPGA-based SmartNIC

Guanwen (Henry) Zhong, Senior Researcher

AMD Research and Advanced Development

2024 OFA Virtual Workshop

2 |

[Public]

ML model size and GPU performance over the past 10 years

• ML model size over 10 years: ~8600x

• Exponential growth from 61M in 2012 to 530B in

2021

• AMD GPU performance over 10 years: ~50x

• ML model size has outpaced the growth in

single GPU performance over the past 10

years

3 |

[Public]

Ethernet speeds over the past 40 years

• ML model size over 10 years: ~8600x

• AMD GPU performance over 10 years: ~50x

• Ethernet speed over 10 years: ~10x

• Significantly slower than GPU advancement and

ML model size growth

• Emergence of scale-out architectures

• A sea of heterogeneous nodes connected via the

high-speed network

*Source from Ethernet Roadmap 2023 by Ethernet Alliance

4 |

[Public]

Emergence of scale-out architectures

• A sea of nodes connected via high-speed and

low-latency network interconnect

• Heterogeneity within a node
• CPUs, FPGAs, GPUs, ASICs (such as TPUs), SmartNICs

…

• SmartNIC acts as an intermediate hub for

various components
• Regular “NIC” functions: protocol handling, vSwitch,

crypto, …

• Value-add “NIC” functions: TOE, RDMA, security,

telemetry, …

• Upper layer processing: transport-layer and above,

accelerate streaming and lookaside applications

• High-speed and low-latency networking: RDMA

5 |

[Public]

Data communication in scale-out setups

• Traditional way incurs multiple data

copies

• Programmable SmartNIC-enabled

system – zero copy

1. Enable direct memory access among peers

2. Bring data as close to compute as possible

6 |

[Public]

What kind of programmable SmartNIC features do we need in a

scale-out system?

• Normal network packets

• TCP, UDP, DCCP, SCTP, QUIC, …

• Remote direct memory access (RDMA)

• RoCEv2 packets

• Shared by host, GPU and FPGA

• Bring data as close to accelerators as

possible for fast and adaptable hardware

acceleration

• Compute logic for general applications

inside SmartNIC
• Streaming computation

• Lookaside computation

7 |

[Public]

Why RecoNIC?

Stand-alone transport-layer offloading engines

• Catapult LTL engine [3]

• TCP offloading engine [4] and RDMA [5] from ETH

Zurich

• ERNIC [6]

• An RDMA engine from AMD

• RoCEv2 implementation

• RDMA is the de facto standard for high-speed

data communication for ML & HPC applications

• Basic Adaptive SmartNICs without transport-

layer offloading engine

• OpenNIC [1]

• Corundum [2]

OpenNIC [1]

There is no open-sourced RDMA-enabled adaptive SmartNIC platform

8 |

[Public]

RecoNIC: RDMA-enabled Compute Offloading on SmartNIC

• An open-source 100Gb/s FPGA-based SmartNIC infrastructure/testbed with

RDMA and compute offloading

• To enable scale-out heterogeneous systems

• To enable direct memory access among network-connected peers

• To bring data as close to various types of accelerators as possible

9 |

[Public]

The RecoNIC system architecture

• A hardware shell

• RDMA engine: shared by host and accelerators

• Compute boxes for streaming and lookaside

acceleration

• Packet classification

• Auxiliary components
• MAC, QDMA, crossbars, arbiter

• Software stacks

• Network stacks
• non-RDMA traffic such as TCP/IP, UDP/IP and ARP

• User-space RDMA APIs

• Memory driver
• data transfers between host and device memory

• Control driver
• Register configuration control

• Compute control

10 |

[Public]

The RecoNIC network flow

• Non-RDMA traffic
• TX path: Network stack -> QDMA subsystem TX ->

Arbiter -> MAC subsystem TX

• RX path: MAC subsystem RX -> Packet

classification -> Streaming compute -> QDMA

subsystem RX -> Network stack

11 |

[Public]

The RecoNIC network flow

• QP and data buffer can be declared either in

host or device memory

• RDMA traffic
• TX path (RDMA write as an example)

•  Host declares QP, configures RDMA and rings SQ

doorbell

•  RDMA engine fetches WQE from SQ

•  RDMA engine fetches payload from user buffer and

constructs RDMA write packets

•  RDMA engine sends RDMA write packets

•  RDMA engine updates CQ when receiving RDMA write

acknowledgement packets

•  Host polls CQ doorbell to detect when RDMA write is

done

RQi

SQi
CQi

RQi

SQi
CQi

user
buffer

user
buffer


 







12 |

[Public]

The RecoNIC network flow

• RDMA traffic
• RX path (RDMA read response as an example)

•  Host registers memory region

•  RDMA engine waits for RDMA read request from a

remote peer

•  RDMA engine validates read requests, fetches payload

and constructs RDMA read response packets

•  RDMA engine sends RDMA read response packets

• Memory region can be declared either in

host or device memory

memory
region








memory
region

13 |

[Public]

Hardware component: lookaside compute

• Compute acceleration over data stored in device

memory

• Datapath interface: AXI4 memory mapped, access

data from either device memory or host memory

• Register control interface: AXI4-Lite

• Compute control: two FIFOs

• Control FIFO: stores user-defined compute control

commands

• Status FIFO: stores completion signals such as kernel ID,

job ID, …

• Kernels can trigger RDMA operations

• Potential use cases:

• Applications required to wait for data from multiple peers

before computation

• Supports HLS and RTL implementations

14 |

[Public]

Hardware component: streaming compute

• Compute acceleration over network data at line-rate

• Datapath interface: AXI4-Streaming
• Network data

• Control-path interface: AXI4-Lite for internal registers

• Potential use cases
• Packet processing applications (e.g., packet classification,

protocol handling, forwarding, crypto, checksum offloading,

security, upper-layer processing, …)

• Telemetry

• line-rate application processing such as in-network

aggregation

• …

• Supports Vitis Networking P4, HLS and RTL

implementations

AXI4-Streaming

AXI4-Lite

rx_in

rx_out tx_in

tx_out

config. Streaming

compute

15 |

[Public]

RecoNIC software stacks

• Non-RDMA traffic: onic-driver

• RDMA traffic

• Kernel-bypass RDMA APIs:

libreconic

• RDMA-core library (In-

progress): reco-provider and

reco-ib

16 |

[Public]

RecoNIC software stacks

• Network stacks

• Memory driver

• Data communication between host and FPGA

memory

• Host as a master

• Control driver

• Register control

• Compute control

17 |

[Public]

Built-in lookaside example: network-attached systolic-array MM

• Two peers connected via 100Gbps network
• data at Peer 1

• Compute at Peer 2

• Compute control command

Workflow of the example

18 |

[Public]

Built-in streaming example: packet classification

• To identify RDMA or non-RDMA traffic

• Designed with Vitis Networking P4
• Parser

• Forward

• De-parser

• Input / output data in AXI4-Streaming

19 |

[Public]

Libfabric over RecoNIC: possible integration

Current software/hardware system Interfacing with libfabric

• RecoNIC supports RDMA-core

• RDMA-core provides libibverbs, which can be leveraged by the verbs provider in libfabric

20 |

[Public]

Data movement performance – Host as a master

• Host as a master to access device memory

via QDMA AXI-MM channel

• ~13GB/s for transmitting data >= 512KB

• ~22us for small messages

• Control overhead

21 |

[Public]

Data movement performance – FPGA as a master

• FPGA as a master to access host memory via

PCIe slave bridge

• Low latency (e.g., 64B)

• Write (in orange): ~0.17us

• Read (in blue) : ~0.62us

• Memory access latency over PCIe slave bridge

is much faster than that via QDMA AXI-MM

channel

• FPGA to access device DDR

• Low latency (e.g., 64B)

• Write (in green) : ~0.096us

• Read (in purple): ~0.196us

• Access latency to device memory is lower than

host memory

22 |

[Public]

RDMA read performance

• QP defined in host memory

• Control offloading on FPGA can reduce 22% read

latency for small message size (<= 128KB)

• Near line-rate throughput for 4KB message

23 |

[Public]

RDMA write performance

• QP defined in host memory

• Control offloading on FPGA can reduce ~29% write

latency for small message size (<= 128KB)

• Near line-rate throughput for 8KB message

24 |

[Public]

RDMA latency: host memory vs. device memory

• QP declared in host memory and device

memory

• Control offloading on FPGA

• RDMA write latency with QP in device memory

is ~17.32% better than that in host memory

• RDMA read latency with QP in device memory

is ~15.44% better than that in host memory

• DDR access latency is lower than PCIe access

latency

25 |

[Public]

RDMA throughput: host memory vs. device memory

• QP declared in host memory and device

memory

• Control offloading on FPGA

• RDMA write throughput with QP in device

memory is slightly better than that in host

memory

• RDMA read throughput with QP in device

memory is almost the same with that in host

memory, except for 4KB payload size

26 |

[Public]

Conclusion

• RecoNIC is an open-sourced SmartNIC infrastructure/testbed for scale-out

computing

• First SmartNIC platform that interfaces ERNIC with x86 CPUs

• Provides 100Gb/s line-rate RDMA traffic with low latency

• Supports streaming and lookaside acceleration via VitisNetP4, HLS or RTL to

process network data

• RecoNIC is available at https://github.com/Xilinx/RecoNIC

• A Primer on RecoNIC is available at https://arxiv.org/abs/2312.06207

• If you are interested in RecoNIC, please reach out to Henry (henry.zhong AT

amd.com)

https://github.com/Xilinx/RecoNIC
https://arxiv.org/abs/2312.06207

27 |

[Public]

References

[1] AMD, “AMD OpenNIC Project”, https://github.com/Xilinx/open-nic, Accessed: 2024-04-09.

[2] A. Forencich, et al., ”Corundum: An Open-Source 100-Gbps Nic,” 2020 IEEE 28th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), Fayetteville, AR, USA, 2020, pp. 38-46, doi:

10.1109/FCCM48280.2020.00015.

[3] A. M. Caulfield, et al. "A cloud-scale acceleration architecture." 2016 49th Annual IEEE/ACM international symposium

on microarchitecture (MICRO). IEEE, 2016.

[4] G. Sutter, et al., "FPGA-based TCP/IP Checksum Offloading Engine for 100 Gbps Networks," 2018 International

Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 2018, pp. 1-6, doi:

10.1109/RECONFIG.2018.8641729.

[5] D. Sidler, et al. "StRoM: smart remote memory." Proceedings of the Fifteenth European Conference on Computer

Systems. 2020.

[6] AMD, “AMD ERNIC”, https://www.xilinx.com/products/intellectual-property/ef-di-ernic.html, Accessed: 2024-04-09.

28 |

[Public]

COPYRIGHT AND DISCLAIMER

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, AMD EPYC, AMD Infinity Fabric, AMD Infinity Cache, AMD Instinct MI250X, AMD Instinct 300 Series and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: RecoNIC: RDMA-enabled Compute Offloading on FPGA-based SmartNIC
	Slide 2: ML model size and GPU performance over the past 10 years
	Slide 3: Ethernet speeds over the past 40 years
	Slide 4: Emergence of scale-out architectures
	Slide 5: Data communication in scale-out setups
	Slide 6: What kind of programmable SmartNIC features do we need in a scale-out system?
	Slide 7: Why RecoNIC?
	Slide 8: RecoNIC: RDMA-enabled Compute Offloading on SmartNIC
	Slide 9: The RecoNIC system architecture
	Slide 10: The RecoNIC network flow
	Slide 11: The RecoNIC network flow
	Slide 12: The RecoNIC network flow
	Slide 13: Hardware component: lookaside compute
	Slide 14: Hardware component: streaming compute
	Slide 15: RecoNIC software stacks
	Slide 16: RecoNIC software stacks
	Slide 17: Built-in lookaside example: network-attached systolic-array MM
	Slide 18: Built-in streaming example: packet classification
	Slide 19: Libfabric over RecoNIC: possible integration
	Slide 20: Data movement performance – Host as a master
	Slide 21: Data movement performance – FPGA as a master
	Slide 22: RDMA read performance
	Slide 23: RDMA write performance
	Slide 24: RDMA latency: host memory vs. device memory
	Slide 25: RDMA throughput: host memory vs. device memory
	Slide 26: Conclusion
	Slide 27: References
	Slide 28: COPYRIGHT AND DISCLAIMER
	Slide 29

