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ML model size and GPU performance over the past 10 years

• ML model size over 10 years: ~8600x

• Exponential growth from 61M in 2012 to 530B in 

2021

• AMD GPU performance over 10 years: ~50x

• ML model size has outpaced the growth in 

single GPU performance over the past 10 

years



3 |

[Public]

Ethernet speeds over the past 40 years

• ML model size over 10 years: ~8600x

• AMD GPU performance over 10 years: ~50x

• Ethernet speed over 10 years: ~10x

• Significantly slower than GPU advancement and 

ML model size growth

• Emergence of scale-out architectures

• A sea of heterogeneous nodes connected via the 

high-speed network

*Source from Ethernet Roadmap 2023 by Ethernet Alliance 
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Emergence of scale-out architectures

• A sea of nodes connected via high-speed and 

low-latency network interconnect

• Heterogeneity within a node
• CPUs, FPGAs, GPUs, ASICs (such as TPUs), SmartNICs 

…

• SmartNIC acts as an intermediate hub for 

various components
• Regular “NIC” functions: protocol handling, vSwitch, 

crypto, …

• Value-add “NIC” functions: TOE, RDMA, security, 

telemetry, …

• Upper layer processing: transport-layer and above, 

accelerate streaming and lookaside applications

• High-speed and low-latency networking: RDMA
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Data communication in scale-out setups

• Traditional way incurs multiple data 

copies

• Programmable SmartNIC-enabled 

system – zero copy

1. Enable direct memory access among peers

2. Bring data as close to compute as possible
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What kind of programmable SmartNIC features do we need in a 

scale-out system?

• Normal network packets

• TCP, UDP, DCCP, SCTP, QUIC, …

• Remote direct memory access (RDMA)

• RoCEv2 packets

• Shared by host, GPU and FPGA

• Bring data as close to accelerators as 

possible for fast and adaptable hardware 

acceleration

• Compute logic for general applications 

inside SmartNIC
• Streaming computation

• Lookaside computation
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Why RecoNIC?

Stand-alone transport-layer offloading engines

• Catapult LTL engine [3]

• TCP offloading engine [4] and RDMA [5] from ETH 

Zurich

• ERNIC [6]

• An RDMA engine from AMD

• RoCEv2 implementation

• RDMA is the de facto standard for high-speed 

data communication for ML & HPC applications 

• Basic Adaptive SmartNICs without transport-

layer offloading engine

• OpenNIC [1]

• Corundum [2]

OpenNIC [1]

There is no open-sourced RDMA-enabled adaptive SmartNIC platform
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RecoNIC: RDMA-enabled Compute Offloading on SmartNIC

• An open-source 100Gb/s FPGA-based SmartNIC infrastructure/testbed with 

RDMA and compute offloading

• To enable scale-out heterogeneous systems

• To enable direct memory access among network-connected peers

• To bring data as close to various types of accelerators as possible
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The RecoNIC system architecture

• A hardware shell

• RDMA engine: shared by host and accelerators

• Compute boxes for streaming and lookaside 

acceleration

• Packet classification

• Auxiliary components
• MAC, QDMA, crossbars, arbiter

• Software stacks

• Network stacks
• non-RDMA traffic such as TCP/IP, UDP/IP and ARP

• User-space RDMA APIs

• Memory driver 
• data transfers between host and device memory

• Control driver 
• Register configuration control

• Compute control



10 |

[Public]

The RecoNIC network flow

• Non-RDMA traffic
• TX path: Network stack -> QDMA subsystem TX -> 

Arbiter -> MAC subsystem TX

• RX path: MAC subsystem RX -> Packet 

classification -> Streaming compute -> QDMA 

subsystem RX -> Network stack
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The RecoNIC network flow

• QP and data buffer can be declared either in 

host or device memory

• RDMA traffic
• TX path (RDMA write as an example)

•  Host declares QP, configures RDMA and rings SQ 

doorbell

•  RDMA engine fetches WQE from SQ

•  RDMA engine fetches payload from user buffer and 

constructs RDMA write packets

•  RDMA engine sends RDMA write packets

•  RDMA engine updates CQ when receiving RDMA write 

acknowledgement packets

•  Host polls CQ doorbell to detect when RDMA write is 

done

RQi

SQi
CQi

RQi

SQi
CQi

user 
buffer

user 
buffer


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




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The RecoNIC network flow

• RDMA traffic
• RX path (RDMA read response as an example)

•  Host registers memory region

•  RDMA engine waits for RDMA read request from a 

remote peer

•  RDMA engine validates read requests, fetches payload 

and constructs RDMA read response packets

•  RDMA engine sends RDMA read response packets

• Memory region can be declared either in 

host or device memory

memory 
region








memory 
region
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Hardware component: lookaside compute

• Compute acceleration over data stored in device 

memory

• Datapath interface: AXI4 memory mapped, access 

data from either device memory or host memory

• Register control interface: AXI4-Lite

• Compute control: two FIFOs

• Control FIFO: stores user-defined compute control 

commands

• Status FIFO: stores completion signals such as kernel ID, 

job ID, …

• Kernels can trigger RDMA operations

• Potential use cases:

• Applications required to wait for data from multiple peers 

before computation

• Supports HLS and RTL implementations
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Hardware component: streaming compute

• Compute acceleration over network data at line-rate

• Datapath interface: AXI4-Streaming
• Network data

• Control-path interface: AXI4-Lite for internal registers

• Potential use cases
• Packet processing applications (e.g., packet classification, 

protocol handling, forwarding, crypto, checksum offloading, 

security, upper-layer processing, …)

• Telemetry

• line-rate application processing such as in-network 

aggregation

• …

• Supports Vitis Networking P4, HLS and RTL 

implementations

AXI4-Streaming

AXI4-Lite

rx_in

rx_out tx_in

tx_out

config. Streaming 

compute
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RecoNIC software stacks

• Non-RDMA traffic: onic-driver

• RDMA traffic

• Kernel-bypass RDMA APIs: 

libreconic

• RDMA-core library (In-

progress): reco-provider and 

reco-ib
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RecoNIC software stacks

• Network stacks

• Memory driver

• Data communication between host and FPGA 

memory

• Host as a master

• Control driver

• Register control

• Compute control
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Built-in lookaside example: network-attached systolic-array MM

• Two peers connected via 100Gbps network
• data at Peer 1

• Compute at Peer 2

• Compute control command

Workflow of the example
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Built-in streaming example: packet classification

• To identify RDMA or non-RDMA traffic

• Designed with Vitis Networking P4
• Parser

• Forward

• De-parser

• Input / output data in AXI4-Streaming
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Libfabric over RecoNIC: possible integration

Current software/hardware system Interfacing with libfabric

• RecoNIC supports RDMA-core

• RDMA-core provides libibverbs, which can be leveraged by the verbs provider in libfabric
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Data movement performance – Host as a master

• Host as a master to access device memory 

via QDMA AXI-MM channel

• ~13GB/s for transmitting data >= 512KB

• ~22us for small messages

• Control overhead
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Data movement performance – FPGA as a master

• FPGA as a master to access host memory via 

PCIe slave bridge

• Low latency (e.g., 64B)

• Write (in orange): ~0.17us

• Read (in blue)    : ~0.62us

• Memory access latency over PCIe slave bridge 

is much faster than that via QDMA AXI-MM 

channel

• FPGA to access device DDR

• Low latency (e.g., 64B)

• Write (in green) : ~0.096us

• Read (in purple): ~0.196us

• Access latency to device memory is lower than 

host memory
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RDMA read performance

• QP defined in host memory

• Control offloading on FPGA can reduce 22% read 

latency for small message size (<= 128KB)

• Near line-rate throughput for 4KB message
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RDMA write performance

• QP defined in host memory

• Control offloading on FPGA can reduce ~29% write 

latency for small message size (<= 128KB)

• Near line-rate throughput for 8KB message
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RDMA latency: host memory vs. device memory

• QP declared in host memory and device 

memory

• Control offloading on FPGA

• RDMA write latency with QP in device memory 

is ~17.32% better than that in host memory

• RDMA read latency with QP in device memory 

is ~15.44% better than that in host memory

• DDR access latency is lower than PCIe access 

latency
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RDMA throughput: host memory vs. device memory

• QP declared in host memory and device 

memory

• Control offloading on FPGA

• RDMA write throughput with QP in device 

memory is slightly better than that in host 

memory

• RDMA read throughput with QP in device 

memory is almost the same with that in host 

memory, except for 4KB payload size
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Conclusion

• RecoNIC is an open-sourced SmartNIC infrastructure/testbed for scale-out 

computing

• First SmartNIC platform that interfaces ERNIC with x86 CPUs

• Provides 100Gb/s line-rate RDMA traffic with low latency

• Supports streaming and lookaside acceleration via VitisNetP4, HLS or RTL to 

process network data

• RecoNIC is available at https://github.com/Xilinx/RecoNIC 

• A Primer on RecoNIC is available at https://arxiv.org/abs/2312.06207 

• If you are interested in RecoNIC, please reach out to Henry (henry.zhong AT 

amd.com)

https://github.com/Xilinx/RecoNIC
https://arxiv.org/abs/2312.06207
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