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INTRODUCTION AND MOTIVATION

= All[Reduce is a communication collective operation that is commonly used in HPC
applications as well as distributed DL training.

= Existing AllIReduce algorithms for transferring large GPU data still suffer from poor
performance due to the limited interconnect bandwidth of networks

= Naive point-to-point compression for each data transmission may introduce redundant
compression/decompression operations and hinder non-blocking send/receive operations

= How to co-design and optimize the GPU-based compression at the collective-level along
with the communication patterns of advanced AllReduce algorithms?

= We propose two design approaches along with these directions.
° Ring AllReduce with Collective-level Online Compression
° Recursive-Doubling AllIReduce with Collective-level Online Compression
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DESIGN APPROACHES

= Ring and Recursive-Doubling MPI_AllIReduce with Collective-level Online Compression
°* Compression can reduce the data size and lower the pressure on network with limited bandwidth

Existing Point-to-Point based compression

» Has limitation of overlapping compression/decompression kernels across send/receive operations

« Hinder the non-blocking send/receive operations in AllReduce

Propose a collective-level online compression for Ring based MPI_Allreduce

Propose a collective-level online compression for Recursive-Doubling MPI_Allreduce

Optimize the ZFP compression library to enable execution of compression/decompression/reduction kernels on
multiple CUDA streams

Achieve overlap between the compression/decompression/reduction kernels and send/receive operations
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RING ALLREDUCE WITH COLLECTIVE-LEVEL

ONLINE COMPRESSION

= Data Flow of Ring AllReduce with Collective-level Online Compression
* Data on each GPU is split to multiple chunks

Phasel: Aggregate the values on each GPU in Ring manner

Phase2: Transfer the aggregated values to all GPUs in Ring manner

Compression/decompression run on each data chunk and aggregated value
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RECURSIVE-DOUBLING ALLREDUCE WITH COLLECTIVE-LEVEL

ONLINE COMPRESSION

= Data Flow of Recursive-Doubling AllReduce with Collective-level Online Compression
* Specific pairs of processes exchange messages with each other in a pairwise manner
* Whole data on each GPU is compressed and decompressed
° Fewer data exchanges are needed across the processes, thus fewer compression operations
* Achieve overlap between the compression/decompression/reduction kernels and send/receive operations
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OVERVIEW OF THE MVAPICH2 PROJECT

High Performance open-source MPI Library

Support for multiple interconnects

* InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, Rockport
Networks, and Slingshot

Support for multiple platforms
° x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

Started in 2001, first open-source version demonstrated at SC ‘02
Supports the latest MPI-3.1 standard

http://mvapich.cse.ohio-state.edu

Additional optimized versions for different systems/environments:
*  MVAPICH2-X (Advanced MPI1 + PGAS), since 2011

*  MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

*  MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

*  MVAPICH2-Virt with virtualization support, since 2015

°  MVAPICH2-EA with support for Energy-Awareness, since 2015

* MVAPICH2-Azure for Azure HPC IB instances, since 2019

°  MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

Tools:
*  OSU MPI Micro-Benchmarks (OMB), since 2003
* OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

R
/?/(\\ 23 Years &

Counting! ‘\*\W
2001-2024 SN

Used by more than 3,375 organizations in 91 countries

More than 1.75 Million downloads from the OSU site
directly

Empowering many TOP500 clusters (June ‘23 ranking)

— 11t ,10,649,600-core (Sunway Taihulight)at NSC, Wuxi, China
— 29t 448, 448 cores (Frontera) at TACC
— 46t 288,288 cores(Lassen)atLLNL

—  61st, 570,020 cores (Nurion)in South Koreaand many others

Available with software stacks of many vendors and Linux
Distros (RedHat, SuSE, OpenHPC, and Spack)

Partner in the 29t ranked TACC Frontera system
Empowering Top500 systems for more than 18 years
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EXPERIMENTAL SETUP

= Platform
* Pitzer @OSC (V100 GPU)
°* MRI @OSU (A100 GPU)
* Frontera @TACC (RTX5000 GPU)
* Lassen @LLNL (V100 GPU)

= Baselines
* MVAPICH2-GDR 2.3.7

= Benchmarks
° Benchmark-level evaluations:
* osu_allreduce in OSU Micro-Benchmarks (OMB) suite
° Application-level evaluations:
« Distributed Data Parallel (DDP) training of DNN models with PyTorch
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BENCHMARK-LEVEL EVALUATIONS

Ring and Recursive-Doubling AlIReduce with Collective-level Online Compression

= MPI_Allreduce Communication Latency with OSU Micro-Benchmark on Pitzer (V100 GPUSs)

* Ring AllReduce with compression (Ring+ZFP)

* Reduces the latency by 81.2% (64MB, 16 GPUs, rate:8) vs. original Ring, 85.3% (64MB, 16 GPUSs) vs. Baseline.
° Recursive-Doubling with compression (RD+ZFP)

* Reduces the latency by 73.1% (64MB, 16 GPUs, rate:8) vs. original RD, 75.5% (64MB, 16 GPUSs) vs. Baseline.
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Q. Zhou, B. Ramesh, A. Shafi, M. Abduljabbar, H. Subramoni, and D.K. Panda, “Accelerating MPI AllReduce Communication with Efficient GPU-Based Compression Schemes
on Modern GPU Clusters”, ISC ‘24 (Accepted to be presented).
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BENCHMARK-LEVEL EVALUATIONS

Ring and Recursive-Doubling AlIReduce with Collective-level Online Compression

= MPI_Allreduce Communication Latency on MRl system (A100 GPUSs)
* Ring AllIReduce with compression (Ring+ZFP)
» Reduces the latency by 80.1% (128MB, 8 GPUs, rate:8) vs. original Ring, 82.6% (32MB, 8 GPUSs) vs. Baseline.
° Recursive-Doubling with compression (RD+ZFP)
» Reduces the latency by 77.4% (32MB, 8 GPUs, rate:8) vs. original RD, 59.7% (64MB, 8 GPUSs) vs. Baseline.
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BENCHMARK-LEVEL EVALUATIONS

Ring and Recursive-Doubling AlIReduce with Collective-level Online Compression

= MPI_Allreduce Communication Latency on Frontera Liquid system (RTX5000 GPUs)
* Ring AllReduce with compression (Ring+ZFP)

* Reduces the latency by 69.6% (128MB, 32 GPUs, rate:8) vs. original Ring, 85.0% (128MB, 32 GPUSs) vs. Baseline.

° Recursive-Doubling with compression (RD+ZFP)
» Reduces the latency by 74.2% (64MB, 64 GPUs, rate:8) vs. original RD, 64.8% (8MB, 32 GPUSs) vs. Baseline.
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BENCHMARK-LEVEL EVALUATIONS

Ring and Recursive-Doubling AlIReduce with Collective-level Online Compression

= MPI_Allreduce Communication Latency on Lassen system (V100 GPUSs)
* Ring AllIReduce with compression (Ring+ZFP)
* Reduces the latency by 76.6% (512MB, 256 GPUs, rate:8) vs. original Ring, 65.7% (256MB, 128 GPUSs) vs. Baseline.
° Recursive-Doubling with compression (RD+ZFP)
» Reduces the latency by 72.5% (512MB, 256 GPUs, rate:8) vs. original RD, 29.5% (2MB, 256 GPUSs) vs. Baseline.
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BENCHMARK-LEVEL EVALUATIONS

Compare Collective-level Compression with Point-to-Point Compression

100 - - 100 — 100 « 100 -
® Ring+ZFP-P2P(rate:16) - mRing+ZFP-P2P(rate:16) s ® RD+ZFP-P2P(rate:16) E u RD+ZFP-P2P(rate: 16)2 4. 8
Ring+ZFP-P2P(rate:8) - Ring+ZFP-P2P(rate:8) 3 RD+ZFP-P2P(rate:8) r RD+ZFP-P2P(rate:8)
10 + ® Ring+ZFP(rate:16) 10 | -Ring+ZFP(rate:16)6 6.1% 10 _- ® RD+ZFP(rate:16) 10 m RD+ZFP(rate:16)
g ® Ring+ZFP(rate:8) /E-é? ® Ring+ZFP(rate:8) L7 g ® RD+ZFP(rate:8) é“ ® RD+ZFP(rate:8)
51+ 51 - 51+ 1
5 5 5 5
01 - 01 15 01 - IRty g tyey
FIP SIS FI P PSSP FISSSDRA RS IS S
> Message size (Bytes) > Message size (By”[es) Message size (Bytes} Message size (Bytes)
_ _ Recursive-Doubling Recursive-Doubling
Ring (Pitzer: 4 GPUs) Ring (Pitzer: 8 GPUs) (Pitzer: 4 GPUs) (Pitzer: 8 GPUs)

= Compare with Ring and RD AllReduce algorithms with point-to-point compression in
MVAPICH2-GDR-2.3.7
* Ring AllIReduce with compression reduces the latency by 66.1% (16MB, 8 GPUs, rate:8) vs. P2P compression (Ring+ZFP-P2P)
* RD AllReduce with compression reduces the latency by 24.8% (64MB, 8 GPUs, rate:8) vs. P2P compression (RD+ZFP-P2P)
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APPLICATION-LEVEL EVALUATIONS

DDP training of DNN models using PyTorch
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DDP training performance on Pitzer (V100 GPUs), Dataset. CIFAR10, Batch Size=128, Learning Rate=0.001

" Improvement for DDP training of DNN models using PyTorch
* Use MPI backend with proposed Ring and Recursive-Doubling AllIReduce with Online compression design
* Wide_ResNet50_2:Reduces the training time by 30.1% (Ring+ZFP, 8 GPUs, rate: 10), 32.3% (RD+ZFP, 8 GPUs, rate: 8)
* ResNeXt101-32x8d: Reduce the training time by 26.8% (Ring+ZFP, 16 GPUs, rate: 10), 26.3% (RD+ZFP, 16 GPUs, rate: 8)
° ConvNeXt_Base: Reduce the training time by 35.7% (Ring+ZFP, 16 GPUs, rate: 10), 29.4% (RD+ZFP, 16 GPUs, rate: 8)
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APPLICATION-LEVEL EVALUATIONS

DDP training of DNN models using PyTorch
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= DDP training accuracy with Ring and Recursive-Doubling Allreduce with Online Compression
* Achieves similar convergent training accuracy with proposed Ring+ZFP(rate: 16, 10) and RD+ZFP (rate:16, 8) vs. Baseline
° Big accuracy drop with lower compression (Ring+ZFP(rate: 8), RD+ZFP(rate:6) due to larger compression errors added to gradients
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CONCLUSION AND FUTURE PLAN

= We proposed Collective-level online GPU-based Compression design for Ring and
Recursive-Doubling MPI_Allreduce communication in an MPI library on Modern GPU clusters

= At the benchmark level, the Ring and Recursive-Doubling AllReduce with online compression
reduces communication latency by up to 85.3% and 75.5% respectively compared to the
baseline, and by up to 66.1% and 24.8% respectively compared to point-to-point compression.

= |n PyTorch DDP training, the Ring and Recursive-Doubling AllIReduce with collective-level
online compression reduce the training time by up to 35.7% and 32.3% respectively

= As future work, we plan to we intend to design compression schemes for other parallel
strategies to accelerate the distributed training of larger DL models.
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THANKYOU!

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

== MVAPICH %H}DL
MPI, PGAS and Hybrid MPI+PGAS Library
- High-Performance
Deep Learning
The High-Performance MPI/PGAS Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/
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