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INTRODUCTION AND MOTIVATION

▪ AllReduce is a communication collective operation that is commonly used in HPC 

applications as well as distributed DL training.

▪ Existing AllReduce algorithms for transferring large GPU data still suffer from poor 

performance due to the limited interconnect bandwidth of networks

▪ Naive point-to-point compression for each data transmission may introduce redundant 

compression/decompression operations and hinder non-blocking send/receive operations

▪ How to co-design and optimize the GPU-based compression at the collective-level along 

with the communication patterns of advanced AllReduce algorithms?

▪ We propose two design approaches along with these directions.

• Ring AllReduce with Collective-level Online Compression

• Recursive-Doubling AllReduce with Collective-level Online Compression
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DESIGN APPROACHES

▪ Ring and Recursive-Doubling MPI_AllReduce with Collective-level Online Compression

• Compression can reduce the data size and lower the pressure on network with limited bandwidth

• Existing Point-to-Point based compression 

• Has limitation of overlapping compression/decompression kernels across send/receive operations

• Hinder the non-blocking send/receive operations in AllReduce

• Propose a collective-level online compression for Ring based MPI_Allreduce

• Propose a collective-level online compression for Recursive-Doubling MPI_Allreduce

• Optimize the ZFP compression library to enable execution of compression/decompression/reduction kernels on 

multiple CUDA streams

• Achieve overlap between the compression/decompression/reduction kernels and send/receive operations
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RING ALLREDUCE WITH COLLECTIVE-LEVEL 

ONLINE COMPRESSION
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▪ Data Flow of Ring AllReduce with Collective-level Online Compression

• Data on each GPU is split to multiple chunks

• Phase1: Aggregate the values on each GPU in Ring manner 

• Phase2: Transfer the aggregated values to all GPUs in Ring manner

• Compression/decompression run on each data chunk and aggregated value

Phase 2Phase 1



RECURSIVE-DOUBLING ALLREDUCE WITH COLLECTIVE-LEVEL 

ONLINE COMPRESSION

▪ Data Flow of Recursive-Doubling AllReduce with Collective-level Online Compression

• Specific pairs of processes exchange messages with each other in a pairwise manner

• Whole data on each GPU is compressed and decompressed

• Fewer data exchanges are needed across the processes, thus fewer compression operations

• Achieve overlap between the compression/decompression/reduction kernels and send/receive operations
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OVERVIEW OF THE MVAPICH2 PROJECT
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▪ High Performance open-source MPI Library 

▪ Support for multiple interconnects

• InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS EFA, Rockport 

Networks, and Slingshot

▪ Support for multiple platforms

• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

▪ Started in 2001, first open-source version demonstrated at SC ‘02

▪ Supports the latest MPI-3.1 standard

▪ http://mvapich.cse.ohio-state.edu

▪ Additional optimized versions for different systems/environments:

• MVAPICH2-X (Advanced MPI + PGAS), since 2011

• MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

• MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

• MVAPICH2-Virt with virtualization support, since 2015

• MVAPICH2-EA with support for Energy-Awareness, since 2015

• MVAPICH2-Azure for Azure HPC IB instances, since 2019

• MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

▪ Tools:

• OSU MPI Micro-Benchmarks (OMB), since 2003

• OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,375 organizations in 91 countries

• More than 1.75 Million downloads from the OSU site 

directly

• Empowering many TOP500 clusters (June ‘23 ranking)

– 11th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 29th, 448, 448 cores (Frontera) at TACC

– 46th, 288,288 cores (Lassen) at LLNL

– 61st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux 

Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 29th ranked TACC Frontera system

• Empowering Top500 systems for more than 18 years

http://mvapich.cse.ohio-state.edu/


EXPERIMENTAL SETUP

▪ Platform

• Pitzer @OSC (V100 GPU)

• MRI @OSU (A100 GPU)

• Frontera @TACC (RTX5000 GPU)

• Lassen @LLNL (V100 GPU)

▪ Baselines

• MVAPICH2-GDR 2.3.7

▪ Benchmarks

• Benchmark-level evaluations: 

• osu_allreduce in OSU Micro-Benchmarks (OMB) suite

• Application-level evaluations: 

• Distributed Data Parallel (DDP) training of DNN models with PyTorch
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BENCHMARK-LEVEL EVALUATIONS

▪ MPI_Allreduce Communication Latency with OSU Micro-Benchmark on Pitzer (V100 GPUs)

• Ring AllReduce with compression (Ring+ZFP) 

• Reduces the latency by 81.2% (64MB, 16 GPUs, rate:8) vs. original Ring, 85.3% (64MB, 16 GPUs) vs. Baseline.

• Recursive-Doubling with compression (RD+ZFP) 

• Reduces the latency by 73.1% (64MB, 16 GPUs, rate:8) vs. original RD, 75.5% (64MB, 16 GPUs) vs. Baseline.

Ring and Recursive-Doubling AllReduce with Collective-level Online Compression
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BENCHMARK-LEVEL EVALUATIONS

▪ MPI_Allreduce Communication Latency on MRI system (A100 GPUs)

• Ring AllReduce with compression (Ring+ZFP) 

• Reduces the latency by 80.1% (128MB, 8 GPUs, rate:8) vs. original Ring, 82.6% (32MB, 8 GPUs) vs. Baseline.

• Recursive-Doubling with compression (RD+ZFP) 

• Reduces the latency by 77.4% (32MB, 8 GPUs, rate:8) vs. original RD, 59.7% (64MB, 8 GPUs) vs. Baseline.

Ring and Recursive-Doubling AllReduce with Collective-level Online Compression
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BENCHMARK-LEVEL EVALUATIONS

▪ MPI_Allreduce Communication Latency on Frontera Liquid system (RTX5000 GPUs)

• Ring AllReduce with compression (Ring+ZFP) 

• Reduces the latency by 69.6% (128MB, 32 GPUs, rate:8) vs. original Ring, 85.0% (128MB, 32 GPUs) vs. Baseline.

• Recursive-Doubling with compression (RD+ZFP) 

• Reduces the latency by 74.2% (64MB, 64 GPUs, rate:8) vs. original RD, 64.8% (8MB, 32 GPUs) vs. Baseline.

Ring and Recursive-Doubling AllReduce with Collective-level Online Compression
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BENCHMARK-LEVEL EVALUATIONS

▪ MPI_Allreduce Communication Latency on Lassen system (V100 GPUs)

• Ring AllReduce with compression (Ring+ZFP) 

• Reduces the latency by 76.6% (512MB, 256 GPUs, rate:8) vs. original Ring, 65.7% (256MB, 128 GPUs) vs. Baseline.

• Recursive-Doubling with compression (RD+ZFP) 

• Reduces the latency by 72.5% (512MB, 256 GPUs, rate:8) vs. original RD, 29.5% (2MB, 256 GPUs) vs. Baseline.

Ring and Recursive-Doubling AllReduce with Collective-level Online Compression
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BENCHMARK-LEVEL EVALUATIONS

▪ Compare with Ring and RD AllReduce algorithms with point-to-point compression in 

MVAPICH2-GDR-2.3.7

• Ring AllReduce with compression reduces the latency by 66.1% (16MB, 8 GPUs, rate:8) vs. P2P compression (Ring+ZFP-P2P)

• RD AllReduce with compression reduces the latency by 24.8% (64MB, 8 GPUs, rate:8) vs. P2P compression (RD+ZFP-P2P)

Compare Collective-level Compression with Point-to-Point Compression
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APPLICATION-LEVEL EVALUATIONS

▪ Improvement for DDP training of DNN models using PyTorch
• Use MPI backend with proposed Ring and Recursive-Doubling AllReduce with Online compression design

• Wide_ResNet50_2: Reduces the training time by 30.1% (Ring+ZFP, 8 GPUs, rate: 10),  32.3% (RD+ZFP, 8 GPUs, rate: 8)

• ResNeXt101-32x8d: Reduce the training time by 26.8% (Ring+ZFP, 16 GPUs, rate: 10),  26.3% (RD+ZFP, 16 GPUs, rate: 8)

• ConvNeXt_Base: Reduce the training time by 35.7% (Ring+ZFP, 16 GPUs, rate: 10),  29.4% (RD+ZFP, 16 GPUs, rate: 8)

DDP training of DNN models using PyTorch
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DDP training performance on Pitzer (V100 GPUs), Dataset: CIFAR10, Batch Size=128, Learning Rate=0.001
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APPLICATION-LEVEL EVALUATIONS

▪ DDP training accuracy with Ring and Recursive-Doubling Allreduce with Online Compression
• Achieves similar convergent training accuracy with proposed Ring+ZFP(rate: 16, 10) and RD+ZFP (rate:16, 8) vs. Baseline

• Big accuracy drop with lower compression (Ring+ZFP(rate: 8), RD+ZFP(rate:6) due to larger compression errors added to gradients

DDP training of DNN models using PyTorch
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DDP training accuracy on Pitzer (V100 GPUs), Dataset: CIFAR10, Batch Size=128, Learning Rate=0.001
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CONCLUSION AND FUTURE PLAN

▪ We proposed Collective-level online GPU-based Compression design for Ring and 

Recursive-Doubling MPI_Allreduce communication in an MPI library on Modern GPU clusters

▪ At the benchmark level, the Ring and Recursive-Doubling AllReduce with online compression 

reduces communication latency by up to 85.3% and 75.5% respectively compared to the 

baseline, and by up to 66.1% and 24.8% respectively compared to point-to-point compression.

▪ In PyTorch DDP training, the Ring and Recursive-Doubling AllReduce with collective-level 

online compression reduce the training time by up to 35.7% and 32.3% respectively

▪ As future work, we plan to we intend to design compression schemes for other parallel 

strategies to accelerate the distributed training of larger DL models.
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The High-Performance MPI/PGAS Project
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The High-Performance Deep Learning Project
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