
OFI INTEGRATED SHARED MEMORY OFFLOAD

2024 OFA Virtual Workshop

Alexia Ingerson, Intel

Shi Jin, AWS

Amir Shehata, ORNL

OVERVIEW

▪ Peer provider architecture provides a way for sharing resources

between two or more providers

• Target use case is for integrated shm offload

▪ AWS efa provider was using shm provider deep within efa

protocols to offload local communication but moved to peer

provider infrastructure

▪ ORNL has been developing a new “link” provider (LINKx) to allow

any provider to offload to shm without having to manage two

providers

What is the peer provider
and how does it work?

What has changed since
last year?

How did AWS use it in its
efa provider?

What issues did they have
and how did they solve
them?

How did using shm as a
peer help efa?

What is the link provider?

What does a provider need
in order to leverage LINKx
support?

What is the current status
and direction of the
provider?

What are future
extensions?

2 © OpenFabrics Alliance

PEER PROVIDER OVERVIEW

▪ Expose one endpoint to app while using two providers

• One for external, internode communication (verbs, tcp, efa, cxi, etc)

• One for internal, intranode communication (shm)

▪ Share provider resources

• Write to same CQ

• Update same counters

• Get receive buffers from the same receive context (SRX)

• Share addressing (e.g. fi_addr)

▪ All sharing and coordination is done internally, no application changes necessary

▪ “Owner” vs “peer”

• Owner owns resource and exports it for use by a peer

• Peer cannot directly access owner resource – has to use imported ops

3 © OpenFabrics Alliance

PEER PROVIDER EXAMPLES

4 © OpenFabrics Alliance

EFA

SHM

SHM accesses EFA-owned

resources

EFA owns CQ, cntr, and SRX

LINKx

SHMCXI

LINKx owns CQ, cntr, and SRX

SHM and CXI access LINKx

resources

import import import

EFA redirects intranode

transfers to shm

intranode internode intranode

LINKx picks provider based on

target address

Link provider handles coordination,

providers only need to import

EFA offloads to shm for local

communication

owners

peers

5 © OpenFabrics Alliance

EXAMPLE - OWNER: EFA

Shared
Completion

Queue/Cntrs

Shared
Receive
Context

EFA SHM

Imported
CQ

Imported
SRX

0(4) 1(5) 2(6) 3(7)

Local peers (app fi_addr)
0 1 2 3 4 5 6 7

EFA adds addresses into SHM’s AV with
FI_AV_USER_ID which allows SHM to report

the application fi_addrs in the CQ

SHM writes
completions directly
into EFA-owned CQ

and gets receive
buffers from EFA-

managed SRX

fi_cq_read() fi_recv()fi_send()

EFA decides if peer
is remote or local

6 © OpenFabrics Alliance

EXAMPLE - OWNER: LINKX

LINKx

Shared
Completion

Queue/Cntrs

Shared
Receive
Context

CXI SHM

Imported
CQ

Imported
SRX

0(4) 1(5) 2(6) 3(7)

Local peers (fi_addr)Remote peers (fi_addr)

0 1 2 3 4 5 6 7App peers

LINKx adds addresses into SHM and CXI’s AVs with
FI_AV_USER_ID which allows peer providers to report

the application fi_addrs in the CQ

CXI and SHM write
completions directly

into LINKx-owned
CQ and get receive
buffers from LINKx-

managed SRX

fi_cq_read() fi_recv()fi_send()

LINKx decides if peer
is remote or local Imported

CQ
Imported

SRX

0(0) 1(1) 2(2) 3(3)

7 © OpenFabrics Alliance

SHARED COMPLETION QUEUE API

struct fi_ops_cq_owner {

 ssize_t (*write)();

 ssize_t (*writeerr)();

};

3. Peer calls imported
peer_cq->owner_ops in

order to write an entry to
the shared CQ

struct fid_peer_cq {

 struct fid fid;

 struct fi_ops_cq_owner *owner_ops;

};

struct fi_peer_cq_context {

 struct fid_peer_cq *cq;

};

1. Owner allocates a peer cq and defines peer CQ write ops

2. Owner calls fi_cq_open, passing in the peer_cq via context
indicating a peer with attr->flags | FI_PEER

fi_cq_open(peer_domain, &attr, &peer_cq, peer_context);

8 © OpenFabrics Alliance

SHARED COUNTER API

struct fi_ops_cntr_owner {

 ssize_t (*inc)(…);

 ssize_t (*incerr)(…);

};

3. Peer calls imported
peer_cntr->owner_ops in

order to increment the
shared counter

struct fid_peer_cntr {

 struct fid fid;

 struct fi_ops_cntr_owner *owner_ops;

};

struct fi_peer_cntr_context {

 struct fid_peer_cntr *cntr;

};

1. Owner allocates a peer cntr and defines peer cntr write ops

2. Owner calls fi_cntr_open, passing in the peer_cntr via context
indicating a peer with attr->flags | FI_PEER

fi_cntr_open(peer_domain, &attr, &peer_cntr, peer_context);

9 © OpenFabrics Alliance

SHARED RECEIVE CONTEXT

struct fi_ops_srx_owner {

 int (*get_msg)(…);

 int (*get_tag)(…);

 int (*queue_msg)(…);

 int (*queue_tag)(…);

 void (*foreach_unspec_addr)(…);

 void (*free_entry)(…);

};

1. Owner creates peer_srx_context and sets owner ops

2. Owner exports SRX into peer by calling fi_srx_context
passing in the peer_srx via context indicating a peer with

attr->flags | FI_PEER. Peer sets peer_ops

Peer calls owner ops to get, queue, and free messages

struct fi_peer_srx_context {

 struct fid_peer_srx *srx;

};

struct fid_peer_srx {

 struct fid_ep ep_fid;

 struct fi_ops_srx_owner *owner_ops;

 struct fi_ops_srx_peer *peer_ops;

};

struct fi_ops_srx_peer {

 int (*start_msg)(…);

 int (*start_tag)(…);

 int (*discard_msg)(…);

 int (*discard_tag)(…);

};

Owner calls peer ops to start and discard unexpected messages

fi_srx_context(peer_domain, &attr, &srx_fid, peer_srx_context);

New owner op added to notify owner that AV update has
occurred and unexpected messages from an unknown

source might need to be updated

EFA SHM OFFLOAD INTEGRATION

10 © OpenFabrics Alliance

A DAY IN LIFE OF MESSAGES THROUGH EFA + SHM PROVIDER

11 © OpenFabrics Alliance

Application
send buffer

SENDER

EFA PROVIDER

Application
buffer

shm’s bounce
buffer

SHM PROVIDERAPPLICATION

Protocol
selection,
packet
packaging

fi_tsend
Protocol
selection,
packet
packaging

RECEIVER

EFA PROVIDER

fi_tsend

APPLICATION

BEFORE USING PEER PROVIDER

memcpy

Poll shm CQ

Write to
application
CQ and
counter

Application
counter

Write to EFA’s shm CQ

efa’s bounce
buffer

Poll shm CQ

memcpymemcpy

Write to EFA’s shm CQ

Write to
application
CQ and
counter

Application
CQ

efa’s
shm CQ

efa’s
shm CQ

Application
counter

Application
CQ

Large messages
fallback to efa-

managed rendezvous
through shm

A DAY IN LIFE OF MESSAGES THROUGH EFA + SHM PROVIDER

12 © OpenFabrics Alliance

Application
send buffer

SENDER

EFA PROVIDER

Application
buffer

shm’s bounce
buffer

SHM PROVIDERAPPLICATION

Local vs
remote

fi_tsend
Protocol
selection,
packet
packaging

RECEIVER

EFA PROVIDER

fi_tsend

APPLICATION

AFTER USING PEER PROVIDER

Write to application CQ

memcpymemcpy

Write to application CQ

Write to application counter Write to application counter

Application
CQ

Application
counter

Application
counter

Application
CQ

PERFORMANCE BOOST FOR EFA + SHM

13 © OpenFabrics Alliance

OSU latency

PERFORMANCE BOOST FOR EFA + SHM

14 © OpenFabrics Alliance

OSU alltoallw

PERFORMANCE BOOST FOR EFA + SHM

15 © OpenFabrics Alliance

OpenFOAM MotorBike4M

CONCERNS AND FUTURE WORK

▪ Discrepancy in provider’s ability to handle unexpected messages

• Efa provider can handle unlimited number of unexpected messages (until memory exhaustion) while shm provider’s

CMA protocol (>4KB) can only handle up to rx size (1K default)

• Before using peer provider model, efa provider handled unexpected message buffering for shm

• After using peer provider model, unexpected messaging handed off to shm provider and exposes restriction

▪ Locking strategy

• Need a dedicated lock to protect shared receive context resources accessed by data progress call (fi_cq_read) and

transmission calls (fi_*send*)

• Currently this lock created as domain level lock which can cause locking contention when domain is shared by multiple

EPs

▪ MR sharing
• MR descriptors interpreted by providers differently (shm uses struct ofi_mr * while efa uses struct efa_mr *)

• Memory needs to be registered twice for each provider and translation needed when passing descriptors between

providers

• Need better way to share MR descriptor between providers

16 © OpenFabrics Alliance

LINKX PROVIDER
Amir Shehata, Systems Engineer

Oak Ridge National Lab

2024 OFA Virtual Workshop

ORNL is managed by UT-Battelle LLC for the US Department of
Energy

LINKx Provider

Amir Shehata
Advanced Tehnology Section
 Technology Integration Group
shehataa@ornl.gov

33 Open slide master to edit

Overview
● Provide an alternative MPI software stack using

Open MPI on the Frontier supercomputer

● Users need more choices of MPI implementations
● Work around problems
● Try out new features

● Vendor only provides Cray MPI on Frontier via a
libfabric provider, CXI.

● CXI has no shared memory offload
● Solution is to develop a new libfabric provider to

link both CXI and SHM libfabric providers
● Solution has been tested and deployed on Frontier

44 Open slide master to edit

Available Solutions
• Cray supports Slingshot 11 via a new CXI libfabric provider

● BUT, CXI provider does not have shared memory offload
• Two potential solutions:

1) Use CXI provider through Open MPI’s MTL path and implement
shared memory offload in libfabric

2) Use CXI provider through Open MPI’s BTL path and use Open MPI
shared memory module

55 Open slide master to edit

Why libfabric?
• Approach should be flexible to link any libfabric provider
• BTL option restricts the solution to Open MPI
• By pushing the shared memory offload to libfabric, then any

application using libfabric may benefit from this feature
• Having a separate provider, LINKx, avoids the need to implement the

shared memory offload in every provider which needs SHM
• Solution should not be restricted to linking SHM, but be flexible to link

any provider which supports the peer infrastructure
• This opens the potential for the following features:

 Supporting heterogeneous interfaces
 Supporting binding multiple interfaces (Multi-Rail)

66 Open slide master to edit

Solution Architecture
Full architectural overivew presented last year:
https://www.openfabrics.org/2023-ofa-
virtual-workshop-agenda/

Solution Architecture

77 Open slide master to edit

Solution Architecture

Introduce LINKx provider binds SHM and CXI

Solution Architecture

88 Open slide master to edit

Solution Architecture

Introduce LINKx provider binds SHM and CXI

Solution Architecture

LINKx shares
● Completion Queues
● Shared Receive Queues

With core providers

99 Open slide master to edit

Solution Architecture

Introduce LINKx provider binds SHM and CXI

Solution Architecture

LINKx shares
● Completion Queues
● Shared Receive Queues

With core providers

LINKx selects core provider based
on destination locality

● Intra-node use SHM provider
● Inter-node use CXI provider

1010 Open slide master to edit

LINKx Architecture
• LINKx behaves both like an application and a provider

 Users of libfabric see LINKx as a provider they can select
 LINKx behaves as an application in that it sets up “core” providers

the same way an application would
• LINKx uses the peer infrastructure to share its:

 Receive and unexpected queues
 Completion queues

• Core providers pull receive requests from the shared queues and place
completion events on LINKx’ completion queue.

1111 Open slide master to edit

LINKx Status
• Currently in production on Frontier

● Available via module environments

• Tested Linking SHM with CXI
• Tested linking SHM with RXM
• It supports Tagged and RMA interfaces only
• It does not support counters

1212 Open slide master to edit

LINKx Usage

 Application then selects linkx provider
 EX: In Open MPI the selection can be forced using mca parameter:

opal_common_ofi_provider_include

On Frontier
#> module load ums
#> module load ums024

#> export FI_LINKX_PROV_LINKS= “shm+tcp;ofi_rxm”
#> fi_info
...
provider: shm+tcp;ofi_rxm:linkx
 fabric: ofi_lnx_fabric
 domain: shm+hsn0:ofi_lnx_domain
 version: 120.0
 type: FI_EP_RDM
 protocol: FI_PROTO_SHM

On Frontier
#> module load ums
#> module load ums024

#> export FI_LINKX_PROV_LINKS= “shm+cxi”
#> fi_info
...
provider: shm+cxi:linkx
 fabric: ofi_lnx_fabric
 domain: shm+cxi0:ofi_lnx_domain
 version: 120.0
 type: FI_EP_RDM
 protocol: FI_PROTO_SHM

1313 Open slide master to edit

Performance: LINKx vs SHM – 56 Processes

Negligible Performance
Overhead.

1414 Open slide master to edit

Performance: LINKx vs SHM – 56 Processes

1515 Open slide master to edit

Performance: LINKx vs CXI – 1024 Processes

Performance overhead
noticed as collective size
increases

1616 Open slide master to edit

Performance: LINKx vs CXI – 1024 Processes

1717 Open slide master to edit

Open Questions
 Memory Registration

● How should LINKx handle memory registration? The libfabric API
assumes a single provider.

– LINKx has no way of knowing which core provider to register memory against.
– Currently it registers memory against all core providers.

 Hardware Offload support
 Due to shared receive queues, HW offload, like tag matching needs to

be turned off.
 Can be turned on if application never uses FI_ADDR_UNSPEC

1818 Open slide master to edit

Future Work
 Support all libfabric APIs.

● Currently only Tagged and RMA are supported
 Optimize LINKx to reduce the overhead as much as possible
 Better handling for memory registration
 Handle hardware offload; tag matching, stream triggering
 Support linking any number of providers
 Implement Multi-Rail

1919 Open slide master to edit

Conclusion
● Solution is available and tested on Frontier
● LINKx provides a portable solution which can benefit any

libfabric user
● LINKx is expandable and can support different features
● More work is needed to fully optimize it
● Upstreaming work is currently underway

Questions?

THANK YOU

2024 OFA Virtual Workshop

Alexia Ingerson, Intel
Shi Jin, AWS

Amir Shehata, ORNL

	Slide 1: OFI Integrated Shared Memory Offload
	Slide 2: Overview
	Slide 3: Peer Provider overview
	Slide 4: Peer provider examples
	Slide 5: Example - Owner: efa
	Slide 6: Example - Owner: LINKx
	Slide 7: Shared Completion queue api
	Slide 8: Shared counter api
	Slide 9: Shared receive context
	Slide 10: Efa shm offload integration
	Slide 11: A Day in life of messages through efa + SHM provider
	Slide 12: A Day in life of messages through efa + SHM provider
	Slide 13: PERFORMANCE BOOST FOR EFA + SHM
	Slide 14: PERFORMANCE BOOST FOR EFA + SHM
	Slide 15: PERFORMANCE BOOST FOR EFA + SHM
	Slide 16: Concerns and future work
	LINKx Provider
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	LINKx Usage
	Performance: LINKx vs SHM – 56 Processes
	Performance: LINKx vs SHM – 56 Processes (2)
	Performance: LINKx vs CXI – 1024 Processes
	Performance: LINKx vs CXI – 1024 Processes (2)
	Considerations
	Future Work
	Slide 19

