
LIBFABRIC: GETTING STARTED WITH ULTRA ETHERNET
Jianxin Xiong

Intel Corporation

2025 OFA Webinar Series

MEET THE PRESENTER: JIANXIN XIONG, INTEL

Jianxin Xiong, Intel
Jianxin Xiong is a Principal Engineer at Intel. He has rich experience in
various communication software stacks for HPC and AI, from MPI/CCL
down to kernel RDMA driver. He is currently the chair of Open Fabrics
Interface Working Group and the maintainer of Libfabric
(https://ofiwg.github.io/libfabric). He is an active participant of several
UEC Work Groups, including the Software and Transport Work Groups.

2 © OpenFabrics Alliance

THE NEWS

3 © OpenFabrics Alliance

EXECUTIVE SUMMARY

© OpenFabrics Alliance4

First look of
Ultra Ethernet

From the eyes of a libfabric developer

what’s the

connection

OUTLINE

5 © OpenFabrics Alliance

Ultra Ethernet Overview

Libfabric in A Nutshell

Working with Libfabric over Ultra Ethernet

LIBFABRIC IN A NUTSHELL

 What is libfabric?
• A.K.A. OpenFabrics Interface (OFI), a project under

OpenFabrics Alliance (OFA)
• Community driven, low-level communication library for HPC,

AI, and distributed storage
• Abstract diverse networking technologies

• Core providers: cxi, efa, opx, shm, tcp, ucx, verbs, …
• Utility providers: hook, lnx, mrail, rxm, rxd, …

• API co-designed with fabric providers and app developers
• Minimize impedance mismatching

• Queue based asynchronous RDMA operations
• Support GPU/Accelerator memory (HMEM)

 History of libfabric
• Project started: 2013
• First stable release: v1.0.0, Apr 2016
• Latest release: v2.1.0, March 2025
• Upcoming release: v2.2.0, June 30, 2025

 Links at the end

6 © OpenFabrics Alliance

uetuet

LIBFABRIC OBJECTS

© OpenFabrics Alliance7

EPEP

AVCQ

domain

fabric

EQ

CNTR MRPEP

bind

own
EP

xfer

FI_EP_MSG
FI_EP_RDM

FI_EP_DGRAM

EP Types

LIFE CYCLE OF A LIBFABRIC APPLICATION

© OpenFabrics Alliance8

Discovery
fi_version()
fi_getinfo()

Initialization
fi_fabric()

fi_domain()
fi_av_open()
fi_av_insert()
fi_cq_open()

fi_cntr_open()
fi_eq_open()
fi_endpoint()
fi_mr_reg()
fi_*_bind()
fi_enable()

Communication
fi_send() / fi_tsend()
fi_recv() / fi_trecv()
fi_read() / fi_write()

fi_atomic_*()
fi_cq_read()

fi_cntr_read()
fi_eq_read()

Finalization
fi_close()

OUTLINE

9 © OpenFabrics Alliance

Ultra Ethernet Overview

Libfabric in A Nutshell

Working with Libfabric over Ultra Ethernet

WHAT IS ULTRA ETHERNET?

 A high-performance Ethernet stack for HPC & AI
• Ethernet is ubiquitous
• Evolve Ethernet to embrace new level of capability
• Standard, not proprietary
• Meet the demands from hyperscale computing and AI

• Scale to 1M simultaneous endpoints
• Maximizing performance, scalability, and efficiency
 Ultra Ethernet Consortium (UEC)

• A consensus-based standards organization
• Operating under the Linux Foundation
• 90+ members as of today
• 8 Working groups
• https://ultraethernet.org
 Ultra Ethernet Specification v1.0

• Released on 6/11/2025
• https://ultraethernet.org/uec-1-0-spec

10 © OpenFabrics Alliance

BENEFITS OF ULTRA ETHERNET NETWORKING

© OpenFabrics Alliance11

ULTRA ETHERNET SPECIFICATION LAYERS

 Software layer
• UE libfabric mapping
 Transport layer

• Semantics (SES)
• Packet delivery (PDS)
• Congestion management (CMS)
• Security (TSS)
 Network layer

• Packet trimming
 Link layer

• Link layer retry (LLR)
• Credit-based flow control (CBFC)
• LLDP negotiation
 Physical layer

• FEC statistics
• UE LL support

12 © OpenFabrics Alliance

ULTRA ETHERNET TRANSPORT (UET)

 The transport layer protocols are what make UE “UE”
• Designed to serve both HPC and AI workloads

• Connectionless
• Support RDMA
• Provide a variety of communication primitives

• sends (tagged / untagged)
• deferrable sends (tagged / untagged)
• rendez-vous sends (tagged / untagged)
• writes / reads
• atomics

• JOB ID based authorization
• Closely matches libfabric semantics

• Multiple packet delivery ordering model
• ROD, RUD, RUDI, UUD

• Congestion control
• NSCC & RCCC

• Optional Security layer
 Profiles to simplify implementation

• AI Base, AI Full, HPC

13 © OpenFabrics Alliance

UET PACKET FORMAT

14 © OpenFabrics Alliance

See next slide

UET SES: STANDARD HEADER (44 BYTES)

15 © OpenFabrics Alliance

64 bit dest buf

64 bit rkey / tag

64 bit imm_data

64 bit dest addr

addr modecomp mode

for matching senderfor matching sender

max: 2^32-1max: 2^32-1

Opcode (req)

UET_NO_OP

UET_WRITE

UET_READ

UET_ATOMIC

UET_FETCH_ATOMIC

UET_SEND

UET_RENDEZVOUS_SEND

UET_DATAGRAM_SEND

UET_DEFERRABLE_SEND

UET_TAGGED_SEND

UET_RENDZVOUS_TSEND

UET_DEFFERABLE_TSEND

UET_DEFFERABLE_RTR

UET_TSEND_ATOMIC

UET_TSEND_FETCH_ATOMIC

……
Other headers: optimized (non tag, no data), rndv-ext, atomic-ext, response, etc.
Determined by: pds.next_hdr, ses.opcode

imm data

UET DIFFERENT SEND OPS

 Send (tagged / untagged)
• “Eager send”:

• Data is carried in the packet payload
• Deliver to the receive buffer if matching buffer is found
• Handled as “unexpected message” is no matching buffer is found

 Rendezvous Send (tagged / untagged)
• Request to send

• Carry initiator buffer information (addr, key, etc)
• Can optionally carry a portion of “eager data”

• Target side issues Read when matching receive buffer is found
• Target side send ACK when read is done

 Deferrable Send (tagged / untagged)
• “Flow controlled” by the target based on the readiness of receive buffer
• Based on the ACKs from the target, send can proceed normally, or be deferred, or restart (from certain offset)
• Less overhead than RNDV Send in “expected” case

16 © OpenFabrics Alliance

for small messages

for large messages

for large messages

UET ADDRESSING

 How to select a target?
• Fabric Address (FA): Network IP address of the Fabric Endpoint (FEP)
• PIDonFEP: Logical index within the FEP, identifying a set of resources associated with a process
• Job ID: Global unique identifier assigned to the job
• Resource Index (RI): Logical index identifying a “service” (e.g. MPI, CCL) within the process
• Relative Addressing:

• Local PIDonFEP table per Job ID
• Target determined by <FA, JobID, PIDonFEP, RI>

• Absolute Addressing:
• global PIDonFEP table
• Target determined by <FA, PIDonFEP, RI>
• JobID is used for authorization

 How to identify a buffer at the selected target?
• Tag (ses.match_bits) for tagged recv or memory key (ses.memory_key) for RMA
• Initiator ID (ses.initiator) if FI_DIRECTED_RECV is enabled
• Must be authorized with Job ID

17 © OpenFabrics Alliance

UET PROFILES

 UET covers a wide range of semantics and
capabilities
 Applications have different requirements,

often only need a subset
 Profiles allow specialized implementation

to simplify and optimize
 Three profiles

• AI Base: support *CCL and UD
• AI Full: all AI training & AI inferencing applications
• HPC: full-fledged HPC semantics, wide range of

applications

 Profiles are negotiated at initialization
• Part of libfabric endpoint address
• AI Full is not a subset of HPC, but can be used as if it

is with some restrictions (deferred treated as regular)

18 © OpenFabrics Alliance

HPCAI FULLAI BASE

MUSTMUSTMUSTNO_OP

4GB-14GB-11 MTUSEND

MUSTMUSTMUSTDATAGRAM SEND

MUSTMUSTMUSTTSEND (exact match)

MUSTMUSTTSEND (wildcard)

MUSTMUSTMUSTWRITE / WRITE IMM

MUSTMUSTREAD

MUSTMUSTMUSTNon-fetching Atomic

MUSTMUSTFetching Atomic

MUSTTagged Atomics

MUSTDeferrable SEND

MUSTDeferrable TSEND

MUSTRENDEZVOUS

OUTLINE

19 © OpenFabrics Alliance

Ultra Ethernet Overview

Libfabric in A Nutshell

Working with Libfabric over Ultra Ethernet

LIBFABRIC UET PROVIDER SOFTWARE ARCHITECTURE

20 © OpenFabrics Alliance

TO MAKE IT SIMPLE

 Libfabric UET provider follows the same provider API as other providers do

 However, the UET provider do have some details that may need special attention in
order to fully utilize the fabric features and avoid discovery errors

21 © OpenFabrics Alliance

Applications may just work by
simply asking for the provider

Will pick a few … refer to
the specs for more details

UET ADDRESS (ENDPOINT ADDRESS)

© OpenFabrics Alliance22

struct uet_addr {
uint8_t ver;
uint8_t reserved;
uint16_t flags;
uint16_t fep_cap;
uint16_t pid_on_fep;
struct uet_fa fa;
uint16_t start_resource_index;
uint16_t num_resource_indices;
uint32_t initiator_id;

};

FI_ADDR_UET

struct uet_fa {
union {

uint32_t v4;
uint8_t v6[16];

}
};

Bits for AI Base / AI Full / HPC

• Fields below valid?
• Relative / absolute addressing?
• IPv4 / IPv6?
• msg_size limited to MTU?

32 bytes32 bytes

16 bytes16 bytes

0

UET PROVIDER: DISCOVERY

© OpenFabrics Alliance23

int fi_getinfo(uint32_t version,
const char *node,
const char *service,
uint64_t flags,
const struct fi_info *hints,
struct fi_info **info);

must >= 2.0
non-NULL only when flags has FI_SOURCE
predefined service name (optional)
FI_SOURCE if node is non-NULL

ValueField

Must be FI_ADDR_UETaddr_format

NULL or a UET addresssrc_addr

Must be NULLdst_addr

ValuesFields

Partial address is returned: version / flags/ type / FA / start RI / FEP capabilities (red on previous slide)src_addr

Will be set to NULL.dst_addr

ENDPOINT ADDRESS ASSIGNMENT

 Local fabric address is available in info->src_addr returned from fi_getinfo()
 Full endpoint address is assigned when the endpoint is created

• A privileged entity is in charge of assigning endpoint address
• The privileged entity may reside in user space (e.g. as part of a provision system), the UET provider would talk to

the kernel driver, which will relay the request to the privileged entity
• The kernel driver may need to program the NIC with the info from the response (security, authorization)
• The kernel driver relay the address info back to the UET provider
 Info contained in address assignment request

• IP address, service
 Info contained in the request relayed by the kernel driver

• IP address, service, pid
 Info contained in the response to the kernel driver

• Full UET address, Job ID, security binding
 Info contained in the response relay back to the UET provider

• Full UET address, Job ID
 Full endpoint address is retrieved with fi_getname() call

24 © OpenFabrics Alliance

MEMORY REGION

 UET memory regions are always associated with endpoints
• mr_mode FI_MR_ENDPOINT is required (set via hints->domain_attr->mr_mode)
• After an MR is created with fi_mr_reg*(), extra steps are needed before it can be used:

 Memory keys have standard format (for both user supplied & provider chosen)

• I: Idempotent Safe. May be used as target for idempotent operations (operations can be applied more then once)
• O: Optimized. Support optimized non-matching headers (small headers having less bits for rkey)

25 © OpenFabrics Alliance

fi_mr_bind(mr, ep_fid, 0);
fi_mr_enable(mr);

I O reserved vendor specific
rkey

reserved rkey / index

O = 0
O = 1

6 bits 8 bits 36 bits 12 bits1b 1b

JOB ID & AUTHORIZATION

 Job ID identifies a group of processes that are allowed to communicate with each
other, i.e., belonging to the same “job”.
 Job ID is carried in the SES header and is used to authorize access to target buffer
 The assignment of Job ID can be complicated, but from user’s point of view, it’s either

passed in by the user or set by the provider
 In libfabric API, Job ID is passed in as “auth_key”, part of domain_attr, ep_attr, mr_attr.
 If auth_key is not set by the user, the provider would use the control API to get the Job

ID from the privileged entity, or use a fallback Job ID if such mechanism doesn’t exist
 Most applications deal with a single Job ID:

26 © OpenFabrics Alliance

Provider setUser set

auth_key_size = 0, auth_key = NULLauth_key_size = 3, auth_key = Job IDdomain_attr (default)

auth_key_size = 0, auth_key = NULLauth_key_size = 3, auth_key = Job IDep_attr (if not default)

auth_key_size = 0, auth_key = NULLauth_key_size = 3, auth_key = Job IDmr_attr (if not default)

AUTHORIZATION WITH MULTIPLE JOB IDS

 Previous mechanism can handle EPs, MRs with different Job IDs but each only handles
one
 Some applications need to have one EP handle more than one Job ID
 FI_AV_AUTH_KEY: allow author key be inserted into AV (to be used as “address”)

• fi_av_insert_auth_key: get an address representing all endpoints with the same auth_key
• fi_av_insert with FI_AUTH_KEY flag: get an address representing a specific endpoint with a specific auth_key
 Domain and endpoint must be opened with proper support

 Receive buffer posted with FI_DIRECTED_RECV enabled would only match sends with
the same auth_key as the src_addr

27 © OpenFabrics Alliance

User set, with FI_AV_AUTH_KEY

auth_key_size = FI_AV_AUTH_KEY, auth_key = NULLdomain_attr

auth_key_size = 0, auth_key = NULLep_attr

auth_key_size = sizeof(struct fi_mr_auth_key),
auth_key = pointer to struct fi_mr_auth_key

mr_attr

struct fi_mr_auth_key {
struct fid_av *av;
fi_addr_t src_addr;

};

DEAL WITH PROFILE LIMITATIONS

 Some profiles, especially AI Base, has limited capabilities
 Most of the limitations can be discovered via various attributes in the ‘fi_info’ structure
 One specific limitation need to be discovered differently

• The AI Base profile allows limiting send/recv to one MTU size, while supporting much larger RMA sizes
• info->ep_attr->max_msg_size is the maximum size among all ops
• To get/set size limit for individual category, need to use the fi_getopt() / fi_setopt() API

• The related option names are:

28 © OpenFabrics Alliance

int fi_getopt(struct fid *ep, int level, int optname, void *optval, size_t *optlen);
int fi_setopt(struct fid *ep, int level, int optname, const void *optval, size_t optlen);

FI_OPT_MAX_MSG_SIZE
FI_OPT_MAX_TAGGED_SIZE
FI_OPT_MAX_RMA_SIZE
FI_OPT_MAX_ATOMIC_SIZE

FI_OPT_MAX_INJECT_MSG_SIZE
FI_OPT_MAX_INJECT_TAGGED_SIZE
FI_OPT_MAX_INJECT_RMA_SIZE
FI_OPT_MAX_INJECT_ATOMIC_SIZE

OPERATION MAPPING

© OpenFabrics Alliance29

FI_EP_DGRAMFI_EP_RDMLibfabric API

UET_DATAGRAM_SENDUET_SENDfi_send

UET_DATAGRAM_SEND
UET_SEND

UET_DEFERRABLE_SEND#

UET_RENDEZVOUS_SEND#

fi_sendv / fi_sendmsg / fi_inject /
fi_senddata / fi_injectdata

N/A
UET_TAGGED_SEND

UET_TAGGED_DEFERRABLE_SEND#

UET_TAGGED_RENDEZVOUS_SEND#
fi_tsend* / fi_tinject*

N/AUET_READfi_read*

N/AUET_WRITEfi_write* / fi_inject_write*

N/AUET_ATOMICfi_atomic / fi_atomicv / fi_injectatomic

N/AUET_ATMIC, UET_TSEND_ATOMICfi_atomicmsg

N/AUET_FETCHING_ATOMICfi_fetch_atomic* / fi_compare_atomic*

depending on message size and profile in use

PACKET DELIVERY MODES

 Four modes defined in Packet Delivery Sublayer (PDS)
• ROD: Reliable Ordered Delivery, deliver once and only once
• RUD: Reliable Unordered Delivery, deliver once and only once
• RUDI: Reliable Unordered Delivery of Idempotent Operations, may deliver multiple times
• UUD: Unreliable Unordered Delivery, best effort

 Delivery mode is part of PDS header
• The UET provider choose the mode based on ordering requirement of operations (invisible to user)
• Mix of ROD and RUD/RUDI enables ordering message with unordered data better performance

 Mapping guidelines for delivery modes

30 © OpenFabrics Alliance

Delivery modesProfileEndpoint type

UUD-FI_EP_DGRAM

ROD, RUDAI Base, AI FullFI_EP_RDM

ROD, RUD, RUDIHPCFI_EP_RDM

UET PROVIDER RUNTIME PARAMETERS

FunctionName

Path to optional service config fileUET_PROVIDER_SERVICE_PATH

Minimal message size to use rendezvous send UET_PROVIDER_MSG_RENDEZVOUS_SIZE

Minimal tagged message size to use rendezvous send UET_PROVIDER_TAGGED_RENDEZVOUS_SIZE

Maximum amount of data to send with the initial rendezvous
request

UET_PROVIDER_MAX_EAGER_SIZE

Optional override of default DSCP codepoint for data traffic
class

UET_PROVIDER_DEF_DATA_DC

Use a fallback Job ID if one cannot be obtained from the job
provisioning system

UET_PROVIDER_FALLBACK_JOBID_SUPPORT

Initiator ID for endpoints configured through the fallback Job ID
mechanism

UET_PROVIDER_INITIATOR_ID

31 © OpenFabrics Alliance

UPSTREAM INTEGRATION

 Status as of today
• No UET provider exists in upstream libfabric repo
• There is a reference provider implementation in UEC member private repo
• Vendors are working on their own UET providers

 Getting providers into upstream is highly encouraged!
 Libfabric core has many utility code that can be reused:

• HMEM support, dmabuf support
• MR cache, memory monitor
• Utility objects on which providers can build their objects: fabric, domain, endpoint, CQ, EQ, AV, etc

 Value add with utility providers
• Hooking providers: profiling, tracing, performance statistics
• Lnx -- combine multiple providers

• shm + network provider: cover or improve scale-up path
• multiple network provider / provider instance: multirail
• Requirement: support FI_PEER

32 © OpenFabrics Alliance

FOR MORE INFORMATION

 UEC Specification v1.0
• https://ultraethernet.org/wp-content/uploads/sites/20/2025/06/UE-Specification-6.11.25.pdf

 Libfabric man pages
• Current head: https://ofiwg.github.io/libfabric/main/man/
• Current head, all-in-one: https://ofiwg.github.io/libfabric/main/man/onepage.html
• v2.0.0: https://ofiwg.github.io/libfabric/v2.0.0/man/

 Libfabric source code:
• https://github.com/ofiwg/libfabric

 UET libfabric reference provider (for UEC member only):
• https://github.com/ultraethernet/uet-libfabric

 OpenFabrics Alliance (OFA)
• https://www.openfabrics.org

 Linux Foundation
• https://www.linuxfoundation.org

33 © OpenFabrics Alliance

THANK YOU
Jianxin Xiong

Intel Corporation

2025 OFA Webinar Series

