2025 OFA Webinar Series

LIBFABRIC: GETTING STARTED WITH ULTRA ETHERNET

Jianxin Xiong

intel.

MEET THE PRESENTER: JIANXIN XIONG, INTEL

Jianxin Xiong, Intel

Jianxin Xiong is a Principal Engineer at Intel. He has rich experience in
various communication software stacks for HPC and Al, from MPI/CCL
down to kernel RDMA driver. He is currently the chair of Open Fabrics
Interface Working Group and the maintainer of Libfabric
(https://ofiwg.qithub.io/libfabric). He is an active participant of several
UEC Work Groups, including the Software and Transport Work Groups.

2 © OpenFabrics Alliance

Jlitra-Ethernce

Consortium

Ultra Ethernet Consortium (UEC) Launches Specification 1.0
Transforming Ethernet for AI and HPC at Scale

UEC Spec 1.0 ignites a new era of interoperable,
high performance, Ethernet Innovation

Ultra Ethernet Consortium | Jun 11, ')F\‘-""a-E.theT
. ¢ ~aX10
ecl{_—;ca’t‘— e
sP aple SOV
sC

3 © OpenFabrics Alliance

EXECUTIVE SUMMARY

what's the
convection e

©

From the eyes of a libfabric developer

First look of
Ultra Ethernet

4 © OpenFabrics Alliance

OUTLINE

Ultra Ethernet Overview

Working with Libfabric over Ultra Ethernet

5 © OpenFabrics Alliance

LIBFABRIC IN A NUTSHELL

= What is libfabric?

* A.K.A. OpenFabrics Interface (OFI), a project under SHMEM Libfabric-enabled Applications DAOS

OpenFabrics Alliance (OFA)

* Community driven, low-level communication library for HPC, Libfabric API
Al, and distributed storage

* Abstract diverse networking technologies
» Core providers: cxi, efa, opx, shm, tcp, ucx, verbs;=.
« Utility providers: hook, Inx, mrail, rxm, rxd, ...
* API co-designed with fabric providers and app developers
* Minimize impedance mismatching
* Queue based asynchronous RDMA operations
* Support GPU/Accelerator memory (HMEM)

= History of libfabric OF! provider

- Project started: 2013
* First stable release: v1.0.0, Apr 2016

* Latest release: v2.1.0, March 2025
* Upcoming release: v2.2.0, June 30, 2025

= |inks at the end

Control Communication Completion Data Transfer

|
_ Connection Management

Discove Completion Queues -

y T P | RMA | Collectives

e

6 © OpenFabrics Alliance

LIBFABRIC OBJECTS

FI_EP_MSG
FI_EP_RDM
FI_EP_DGRAM

7 © OpenFabrics Alliance

LIFE CYCLE OF A LIBFABRIC APPLICATION

Initialization Communication

Discovery

fi_cq_read()

fi_version()

fi_getinfo()

fi_cntr_open() fi_cntr_read()

fi_eq_read()

fi_eq_open()

fi_endpoint()

fi_mr_reg()
fi_* bind()
fi_enable()

8 © OpenFabrics Alliance

OUTLINE

Libfabric in A Nutshell

Working with Libfabric over Ultra Ethernet

T e

© OpenFabrics Alliance

WHAT IS ULTRA ETHERNET?

= A high-performance Ethernet stack for HPC & Al

* Ethernet is ubiquitous
* Evolve Ethernet to embrace new level of capability

* Standard, not proprietary " o
* Meet the demands from hyperscale computing and Al ' SOFTWARE Working Group g
+ Scale to 1M simultaneous endpoints a (| 5[TN g Melr
* Maximizing performance, scalability, and efficiency 5 G s E
. & g TRANSPORT Working Group 5 3
= Ultra Ethernet Consortium (UEC) M E 3L
f I —
* A consensus-based standards organization S E ; E
* Operating under the Linux Foundation T %] s o
< = LINK Working Group pry s
* 90+ members as of today z] P
. O S ———————————————— % -
* 8 Working groups bt S E =
° . e
https://ultraethernet.org N - ' PHYSICAL Working Group =
= Ultra Ethernet Specification v1.0 — -
* Released on 6/11/2025
S’ — S —

* https://ultraethernet.org/uec-1-0-spec

10 © OpenFabrics Alliance

BENEFITS OF ULTRA ETHERNET NETWORKING

Traditional RDMA-Based Networking

UltraEthernet

Consortium

Required In-Order Delivery, Go-Back-N
recovery

Security external to specification

Flow-level multi-pathing

DC-QCN, Timely, DCTCP, Swift

Rigid networking architecture for network
tuning

Scale to low tens of thousands of
simultaneous endpoints

Out-of-Order packet delivery with In-Order
Message Completion

Built-in high-scale, modern security

Packet Spraying (packet-level multipathing)

Sender- and Receiver-based Congestion Control

Semantic-level configuration of workload tuning

Targeting scale of 1M simultaneous endpoints

11 © OpenFabrics Alliance

ULTRA ETHERNET SPECIFICATION LAYERS

= Software layer o Applications
* UE libfabric mapping | Software APIs (*CCL, MPI, OpenSHMEM)
Software T
= Transport layer R m—
* Semantics (SES) UE Transport
Message Semantics
* Packet delivery (PDS) Transport m::"”.
* Congestion management (CMS) Congestion Manag
* Security (TSS) Security
P
= Network layer Network e
* Packet trimming j,;'__',;l.é:-"-""" z S —
" Link layer o — T —
* Link layer retry (LLR) [tinktayer Retry m]ﬁ[’:;an.bmmmm]
* Credit-based flow control (CBFC) T, MAC
* LLDP negotiation 1 Ethernet PHY Layer
- Physical Iayer Phy5|ca| | FECStalsticsm | | UE LL Support |
* FEC statistecs @pacms
¢ UE LL Support D Existing/Unmodified _r_;‘_,-n.,/--- — :
[uec Required i E:_r;ic:gt § '
D UEC Optional (‘t.‘___x ~ '_/,A__/}J

12 © OpenFabrics Alliance

ULTRA ETHERNET TRANSPORT (UET)

= The transport layer protocols are what make UE “UE”
* Designed to serve both HPC and Al workloads
» Connectionless Software APIs
° Support RDMA libfabrics

. . o o icati nse
« Provide a variety of communication primitives il API
Semantics

Map ULP APIs to packets,
Transaction tracking, ordering, completions, etc.

» sends (tagged / untagged) n
+ deferrable sends (tagged / untagged)

* rendez-vous sends (tagged / untagged) E m
4 Transport

Packet Delivery

* writes / reads Reliable delivery,

. Packet ordering, ACK/NACK
» atomics 5 -
. . ongestion
JOB ID based autlhorlza.ltlon | e Security
» Closely matches libfabric semantics Transmit rate control, | Encryption, Key Management
* Multiple packet delivery ordering model QOIS A el pdtion
« ROD, RUD, RUDI, UUD packets
* Congestion control

« NSCC & RCCC
* Optional Security layer
= Profiles to simplify implementation
* Al Base, Al Full, HPC

Ethernet
Fabric

13 © OpenFabrics Alliance

UET PACKET FORMAT

§:2 Ethernet header A
L3 IPv4 or IPv6 header | Network heade
L4 UDP header (optional) v
Entropy header (present if no UDP header)
A
TSS header (optional)
PDS header
UET header
UET .
SES header See next slide v
-
UET payload UET payload
v
UET CRC (optional) or TSS ICV (optional) 2 UET trailer
L2 Ethernet FCS

14 © OpenFabrics Alliance

UET SES: STANDARD HEADER (44 BYTES)

Opcode (req) Heade
UET_NO_OP '
UET_WRITE

UET_READ
UET_ATOMIC
UET_FETCH_ATOMIC
UET_SEND
UET_RENDEZVOUS_SEND
UET_DATAGRAM_SEND
UET_DEFERRABLE_SEND
UET_TAGGED_SEND
UET_RENDZVOUS_TSEND
UET_DEFFERABLE_TSEND

UET_DEFFERABLE_RTR

UET_TSEND_ATOMIC

UET_TSEND_FETCH_ATOMIC

rstart ©
Byte

31

byte 3

rsvd opcode ver |dc| ie |rel|hd |eom|som

message_id

rsvd PIDonFEP SV

resource_index

buffer_offset

buffer_offset

initiator

memory_key / match_bits

memory_key / match_bits

o4 D Key d§

header_data

header_data

request_length

e max: 2732-1 S

Other headers: optimized (non tag, no data), rndv-ext, atomic-ext, response, etc.

Determined by: pds.next_hdr, ses.opcode
15

© OpenFabrics Alliance

UET DIFFERENT SEND OPS

= Send (tagged / untagged)
* “Eager send”:

« Data is carried in the packet payload
« Deliver to the receive buffer if matching buffer is found
» Handled as “unexpected message” is no matching buffer is found

= Rendezvous Send (tagged / untagged)
* Request to send
« Carry initiator buffer information (addr, key, etc)
» Can optionally carry a portion of “eager data”
* Target side issues Read when matching receive buffer is found
* Target side send ACK when read is done

= Deferrable Send (tagged / untagged)
* “Flow controlled” by the target based on the readiness of receive buffer
* Based on the ACKs from the target, send can proceed normally, or be deferred, or restart (from certain offset)
* Less overhead than RNDV Send in “expected” case

16 © OpenFabrics Alliance

UET ADDRESSING

= How to select a target?
* Fabric Address (FA): Network IP address of the Fabric Endpoint (FEP)
* PIDonFEP: Logical index within the FEP, identifying a set of resources associated with a process
* Job ID: Global unique identifier assigned to the job
* Resource Index (R!): Logical index identifying a “service” (e.g. MPI, CCL) within the process
* Relative Addressing:
* Local PIDonFEP table per Job ID
» Target determined by <FA, JoblD, PIDonFEP, RI>
° Absolute Addressing:
+ global PIDonFEP table
» Target determined by <FA, PIDonFEP, RI>
+ JoblID is used for authorization

= How to identify a buffer at the selected target?
* Tag (ses.match_bits) for tagged recv or memory key (ses.memory key) for RMA
¢ Initiator ID (ses.initiator) if FI_DIRECTED_RECYV is enabled
* Must be authorized with Job ID

17 © OpenFabrics Alliance

UET PROFILES

= UET covers a wide range of semantics and
capabilities

= Applications have different requirements,
often only need a subset

Profiles allow specialized implementation

to simplify and optimize

= Three profiles

* Al Base: support *CCL and UD

* Al Full: all Al training & Al inferencing applications

* HPC: full-fledged HPC semantics, wide range of
applications

Profiles are negotiated at initialization

* Part of libfabric endpoint address

* Al Full is not a subset of HPC, but can be used as if it
is with some restrictions (deferred treated as regular)

18

NO_OP
SEND
DATAGRAM SEND
TSEND (exact match)
TSEND (wildcard)
WRITE / WRITE IMM
READ
Non-fetching Atomic
Fetching Atomic
Tagged Atomics
Deferrable SEND
Deferrable TSEND
RENDEZVOUS

MUST
1 MTU
MUST
MUST

MUST

MUST

MUST
4GB-1
MUST
MUST
MUST
MUST
MUST
MUST
MUST

MUST
MUST

© OpenFabrics Alliance

S e | i | e

MUST
4GB-1
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST

MUST

OUTLINE

Libfabric in A Nutshell

Ultra Ethernet Overview

19 © OpenFabrics Alliance

LIBFABRIC UET PROVIDER SOFTWARE ARCHITECTURE

| Applications

v
‘ HPC & Al Middleware (MPI, SHMEM, *CCL)

——————————————————————————————— libfabric APIs
\ 4
[libfabric Core
SRR ProviderAPIs
Vendor UET Provider
Implements libfabric features required by UET User
Control Communication Completion | Data Transfer Space
——————————— -l— ——— Vendor APIs
Vendor Low-Level NIC HW Interface
UET Control

APIls 7
l Vendor Kernel Driver I Kernel Kernel

* Bypass

20 © OpenFabrics Alliance

TO MAKE IT SIMPLE

= Libfabric UET provider follows the same provider API as other providers do

Applications may just work by
simply asking for the provider

= However, the UET provider do have some details that may need special attention in
order to fully utilize the fabric features and avoid discovery errors

the specs for more details

21 © OpenFabrics Alliance

UET ADDRESS (ENDPOINT ADDRESS)

SUADDR_E 32 bytes
struct uet_addr { u

Fields below valid?

Relative / absolute addressing?
IPv4 / IPv6?

msg_size limited to MTU?

Bits for Al Base / Al Full / HPC

uintle t pid on fep; |
struct uet_fa { 16 bytes
union {

uintl6_t num_resource_indices; uint32_t v4;
uint32_t initiator_id; uint8_t v6[16];

i s

22 © OpenFabrics Alliance

UET PROVIDER: DISCOVERY

> must >=2.0

> non-NULL only when flags has FI_SOURCE
const char *service, predefined service name (optional)
uinté4_t flags, FI_SOURCE if node is non-NULL

const struct fi_info *hints,
struct fi_info **info);

addr_format Must be FI_ADDR_UET
src_addr NULL or a UET address
dst_addr Must be NULL

Fields | Values

src_addr Partial address is returned: version / flags/ type / FA / start Rl / FEP capabilities (red on previous slide)
dst_addr Will be set to NULL.

23 © OpenFabrics Alliance

ENDPOINT ADDRESS ASSIGNMENT

Local fabric address is available in info->src_addr returned from fi_getinfo()

Full endpoint address is assighed when the endpoint is created
* A privileged entity is in charge of assigning endpoint address

* The privileged entity may reside in user space (e.g. as part of a provision system), the UET provider would talk to
the kernel driver, which will relay the request to the privileged entity

* The kernel driver may need to program the NIC with the info from the response (security, authorization)
* The kernel driver relay the address info back to the UET provider

Info contained in address assignment request

* |P address, service

Info contained in the request relayed by the kernel driver

* |P address, service, pid

Info contained in the response to the kernel driver

* Full UET address, Job ID, security binding

Info contained in the response relay back to the UET provider

* Full UET address, Job ID

Full endpoint address is retrieved with fi_getname() call

24 © OpenFabrics Alliance

MEMORY REGION

= UET memory regions are always associated with endpoints
* mr_mode FI_MR_ENDPOINT is required (set via hints->domain_attr->mr_mode)
* After an MR is created with fi_mr_reg*(), extra steps are needed before it can be used:

fi_mr_enable(mr);

= Memory keys have standard format (for both user supplied & provider chosen)

1b 1b 6 bits 8 bits 36 bits 12 bits

* I: Idempotent Safe. May be used as target for idempotent operations (operations can be applied more then once)
* O: Optimized. Support optimized non-matching headers (small headers having less bits for rkey)

25 © OpenFabrics Alliance

JOB ID & AUTHORIZATION

= Job ID identifies a group of processes that are allowed to communicate with each
other, i.e., belonging to the same “job”.

= Job ID is carried in the SES header and is used to authorize access to target buffer

= The assignment of Job ID can be complicated, but from user’s point of view, it’s either
passed in by the user or set by the provider

= |n libfabric API, Job ID is passed in as “auth_key”, part of domain_attr, ep_attr, mr_attr.

= |If auth_key is not set by the user, the provider would use the control API to get the Job
ID from the privileged entity, or use a fallback Job ID if such mechanism doesn’t exist

= Most applications deal with a single Job ID:

S e erouderser

domain_attr (default) auth_key_size = 3, auth_key = Job ID auth_key _size =0, auth_key = NULL
ep_attr (if not default) auth_key_size = 3, auth_key = Job ID auth_key size =0, auth_key = NULL
mr_attr (if not default) auth_key size = 3, auth_key =Job ID auth_key size =0, auth_key = NULL

26 © OpenFabrics Alliance

AUTHORIZATION WITH MULTIPLE JOB IDS

= Previous mechanism can handle EPs, MRs with different Job IDs but each only handles
one

Some applications need to have one EP handle more than one Job ID
FI_AV_AUTH_KEY: allow author key be inserted into AV (to be used as “address”)

* fi_av_insert_auth key: get an address representing all endpoints with the same auth_key
* fi_av_insert with FI_AUTH_KEY flag: get an address representing a specific endpoint with a specific auth_key

Domain and endpoint must be opened with proper support

] User set, with FI_AV_AUTH_KEY

domain_attr auth_key_size = FI_AV_AUTH_KEY, auth_key = NULL

ep_attr auth_key_size =0, auth_key = NULL

fi_addr_t src_addr;

mr_attr auth_key_size = sizeof(struct fi_mr_auth_key), }
auth_key = pointer to struct fi_mr_auth_key ‘

Receive buffer posted with FI_DIRECTED_RECYV enabled would only match sends with
the same auth_key as the src_addr

27 © OpenFabrics Alliance

DEAL WITH PROFILE LIMITATIONS

= Some profiles, especially Al Base, has limited capabilities
= Most of the limitations can be discovered via various attributes in the ‘fi_info’ structure

= One specific limitation need to be discovered differently
* The Al Base profile allows limiting send/recv to one MTU size, while supporting much larger RMA sizes
* info->ep_attr->max_msg_size is the maximum size among all ops
* To get/set size limit for individual category, need to use the fi_getopt() / fi_setopt() API

int fi_setopt(struct fid *ep, int level, int optname, const void *optval, size_t optlen);

* The related option names are:

FI_OPT_MAX_RMA_SIZE FI_OPT_MAX_INJECT_RMA_SIZE

FI_OPT_MAX_ATOMIC_SIZE FI_OPT_MAX_INJECT _ATOMIC_SIZE

28 © OpenFabrics Alliance

OPERATION MAPPING

Libfabric API _______FLEPRDM | FLEP DGRAM

fi_send UET_SEND UET_DATAGRAM_SEND
. . . UET_SEND
LSRR/ (L SEElmess 7L I7l1=es/ UET_DEFERRABLE_SEND* UET_DATAGRAM_SEND

fi_senddata / fi_injectdata UET_RENDEZVOUS_SEND*

UET_TAGGED_SEND

fi_tsend* / fi_tinject* UET_TAGGED_DEFERRABLE_SEND* N/A

UET _TAGGED_RENDEZVOUS_SEND?
fi_read* UET_READ N/A
fi_write* / fi_inject_write* UET_WRITE N/A
fi_atomic / fi_atomicv / fi_injectatomic UET_ATOMIC N/A
fi_atomicmsg UET_ATMIC, UET_TSEND_ATOMIC N/A
fi_fetch_atomic* / fi_compare_atomic* UET_FETCHING_ATOMIC N/A

depending on message size and profile in use

29 © OpenFabrics Alliance

PACKET DELIVERY MODES

= Four modes defined in Packet Delivery Sublayer (PDS)
* ROD: Reliable Ordered Delivery, deliver once and only once
* RUD: Reliable Unordered Delivery, deliver once and only once
* RUDI: Reliable Unordered Delivery of Idempotent Operations, may deliver multiple times
* UUD: Unreliable Unordered Delivery, best effort

= Delivery mode is part of PDS header
* The UET provider choose the mode based on ordering requirement of operations (invisible to user)
* Mix of ROD and RUD/RUDI enables ordering message with unordered data - better performance

= Mapping guidelines for delivery modes

Endpoint type m Delivery modes

FI_EP_DGRAM - uuD
FI_EP_RDM Al Base, Al Full ROD, RUD
FI_EP_RDM HPC ROD, RUD, RUDI

30 © OpenFabrics Alliance

UET PROVIDER RUNTIME PARAMETERS

UET_PROVIDER_SERVICE_PATH
UET_PROVIDER_MSG_RENDEZVOUS_SIZE
UET_PROVIDER_TAGGED_RENDEZVOUS_SIZE
UET_PROVIDER_MAX_EAGER_SIZE

UET_PROVIDER_DEF_DATA_DC

UET_PROVIDER_FALLBACK_JOBID_SUPPORT

UET_PROVIDER_INITIATOR_ID

Path to optional service config file
Minimal message size to use rendezvous send
Minimal tagged message size to use rendezvous send

Maximum amount of data to send with the initial rendezvous
request

Optional override of default DSCP codepoint for data traffic
class

Use a fallback Job ID if one cannot be obtained from the job
provisioning system

Initiator ID for endpoints configured through the fallback Job ID
mechanism

31 © OpenFabrics Alliance

UPSTREAM INTEGRATION

= Status as of today
* No UET provider exists in upstream libfabric repo
* There is a reference provider implementation in UEC member private repo
* Vendors are working on their own UET providers

= Getting providers into upstream is highly encouraged!

= Libfabric core has many utility code that can be reused:
* HMEM support, dmabuf support
* MR cache, memory monitor
¢ Utility objects on which providers can build their objects: fabric, domain, endpoint, CQ, EQ, AV, etc

= Value add with utility providers
* Hooking providers: profiling, tracing, performance statistics
* Lnx -- combine multiple providers
» shm + network provider: cover or improve scale-up path
» multiple network provider / provider instance: multirail
* Requirement: support FI_PEER

32 © OpenFabrics Alliance

FOR MORE INFORMATION

= UEC Specification v1.0

* https://ultraethernet.org/wp-content/uploads/sites/20/2025/06/UE-Specification-6.11.25.pdf
= Libfabric man pages

* Current head: https://ofiwg.github.io/libfabric/main/man/

* Current head, all-in-one: https://ofiwg.qgithub.io/libfabric/main/man/onepage.html
* v2.0.0: https://ofiwg.qgithub.io/libfabric/v2.0.0/man/

= | jbfabric source code:
* https://github.com/ofiwg/libfabric

= UET libfabric reference provider (for UEC member only):
* https://github.com/ultraethernet/uet-libfabric

= OpenFabrics Alliance (OFA)

* https://www.openfabrics.org

= | inux Foundation
* https://www.linuxfoundation.org

33 © OpenFabrics Alliance

2025 OFA Webinar Series

THANK YOU

Jianxin Xiong

intel.

