
LIBFABRIC: GETTING STARTED WITH ULTRA ETHERNET
Jianxin Xiong

Intel Corporation

2025 OFA Webinar Series

MEET THE PRESENTER: JIANXIN XIONG, INTEL

Jianxin Xiong, Intel
Jianxin Xiong is a Principal Engineer at Intel. He has rich experience in
various communication software stacks for HPC and AI, from MPI/CCL
down to kernel RDMA driver. He is currently the chair of Open Fabrics
Interface Working Group and the maintainer of Libfabric
(https://ofiwg.github.io/libfabric). He is an active participant of several
UEC Work Groups, including the Software and Transport Work Groups.

2 © OpenFabrics Alliance

THE NEWS

3 © OpenFabrics Alliance

EXECUTIVE SUMMARY

© OpenFabrics Alliance4

First look of
Ultra Ethernet

From the eyes of a libfabric developer

what’s the

connection

OUTLINE

5 © OpenFabrics Alliance

Ultra Ethernet Overview

Libfabric in A Nutshell

Working with Libfabric over Ultra Ethernet

LIBFABRIC IN A NUTSHELL

 What is libfabric?
• A.K.A. OpenFabrics Interface (OFI), a project under

OpenFabrics Alliance (OFA)
• Community driven, low-level communication library for HPC,

AI, and distributed storage
• Abstract diverse networking technologies

• Core providers: cxi, efa, opx, shm, tcp, ucx, verbs, …
• Utility providers: hook, lnx, mrail, rxm, rxd, …

• API co-designed with fabric providers and app developers
• Minimize impedance mismatching

• Queue based asynchronous RDMA operations
• Support GPU/Accelerator memory (HMEM)

 History of libfabric
• Project started: 2013
• First stable release: v1.0.0, Apr 2016
• Latest release: v2.1.0, March 2025
• Upcoming release: v2.2.0, June 30, 2025

 Links at the end

6 © OpenFabrics Alliance

uetuet

LIBFABRIC OBJECTS

© OpenFabrics Alliance7

EPEP

AVCQ

domain

fabric

EQ

CNTR MRPEP

bind

own
EP

xfer

FI_EP_MSG
FI_EP_RDM

FI_EP_DGRAM

EP Types

LIFE CYCLE OF A LIBFABRIC APPLICATION

© OpenFabrics Alliance8

Discovery
fi_version()
fi_getinfo()

Initialization
fi_fabric()

fi_domain()
fi_av_open()
fi_av_insert()
fi_cq_open()

fi_cntr_open()
fi_eq_open()
fi_endpoint()
fi_mr_reg()
fi_*_bind()
fi_enable()

Communication
fi_send() / fi_tsend()
fi_recv() / fi_trecv()
fi_read() / fi_write()

fi_atomic_*()
fi_cq_read()

fi_cntr_read()
fi_eq_read()

Finalization
fi_close()

OUTLINE

9 © OpenFabrics Alliance

Ultra Ethernet Overview

Libfabric in A Nutshell

Working with Libfabric over Ultra Ethernet

WHAT IS ULTRA ETHERNET?

 A high-performance Ethernet stack for HPC & AI
• Ethernet is ubiquitous
• Evolve Ethernet to embrace new level of capability
• Standard, not proprietary
• Meet the demands from hyperscale computing and AI

• Scale to 1M simultaneous endpoints
• Maximizing performance, scalability, and efficiency
 Ultra Ethernet Consortium (UEC)

• A consensus-based standards organization
• Operating under the Linux Foundation
• 90+ members as of today
• 8 Working groups
• https://ultraethernet.org
 Ultra Ethernet Specification v1.0

• Released on 6/11/2025
• https://ultraethernet.org/uec-1-0-spec

10 © OpenFabrics Alliance

BENEFITS OF ULTRA ETHERNET NETWORKING

© OpenFabrics Alliance11

ULTRA ETHERNET SPECIFICATION LAYERS

 Software layer
• UE libfabric mapping
 Transport layer

• Semantics (SES)
• Packet delivery (PDS)
• Congestion management (CMS)
• Security (TSS)
 Network layer

• Packet trimming
 Link layer

• Link layer retry (LLR)
• Credit-based flow control (CBFC)
• LLDP negotiation
 Physical layer

• FEC statistics
• UE LL support

12 © OpenFabrics Alliance

ULTRA ETHERNET TRANSPORT (UET)

 The transport layer protocols are what make UE “UE”
• Designed to serve both HPC and AI workloads

• Connectionless
• Support RDMA
• Provide a variety of communication primitives

• sends (tagged / untagged)
• deferrable sends (tagged / untagged)
• rendez-vous sends (tagged / untagged)
• writes / reads
• atomics

• JOB ID based authorization
• Closely matches libfabric semantics

• Multiple packet delivery ordering model
• ROD, RUD, RUDI, UUD

• Congestion control
• NSCC & RCCC

• Optional Security layer
 Profiles to simplify implementation

• AI Base, AI Full, HPC

13 © OpenFabrics Alliance

UET PACKET FORMAT

14 © OpenFabrics Alliance

See next slide

UET SES: STANDARD HEADER (44 BYTES)

15 © OpenFabrics Alliance

64 bit dest buf

64 bit rkey / tag

64 bit imm_data

64 bit dest addr

addr modecomp mode

for matching senderfor matching sender

max: 2^32-1max: 2^32-1

Opcode (req)

UET_NO_OP

UET_WRITE

UET_READ

UET_ATOMIC

UET_FETCH_ATOMIC

UET_SEND

UET_RENDEZVOUS_SEND

UET_DATAGRAM_SEND

UET_DEFERRABLE_SEND

UET_TAGGED_SEND

UET_RENDZVOUS_TSEND

UET_DEFFERABLE_TSEND

UET_DEFFERABLE_RTR

UET_TSEND_ATOMIC

UET_TSEND_FETCH_ATOMIC

……
Other headers: optimized (non tag, no data), rndv-ext, atomic-ext, response, etc.
Determined by: pds.next_hdr, ses.opcode

imm data

UET DIFFERENT SEND OPS

 Send (tagged / untagged)
• “Eager send”:

• Data is carried in the packet payload
• Deliver to the receive buffer if matching buffer is found
• Handled as “unexpected message” is no matching buffer is found

 Rendezvous Send (tagged / untagged)
• Request to send

• Carry initiator buffer information (addr, key, etc)
• Can optionally carry a portion of “eager data”

• Target side issues Read when matching receive buffer is found
• Target side send ACK when read is done

 Deferrable Send (tagged / untagged)
• “Flow controlled” by the target based on the readiness of receive buffer
• Based on the ACKs from the target, send can proceed normally, or be deferred, or restart (from certain offset)
• Less overhead than RNDV Send in “expected” case

16 © OpenFabrics Alliance

for small messages

for large messages

for large messages

UET ADDRESSING

 How to select a target?
• Fabric Address (FA): Network IP address of the Fabric Endpoint (FEP)
• PIDonFEP: Logical index within the FEP, identifying a set of resources associated with a process
• Job ID: Global unique identifier assigned to the job
• Resource Index (RI): Logical index identifying a “service” (e.g. MPI, CCL) within the process
• Relative Addressing:

• Local PIDonFEP table per Job ID
• Target determined by <FA, JobID, PIDonFEP, RI>

• Absolute Addressing:
• global PIDonFEP table
• Target determined by <FA, PIDonFEP, RI>
• JobID is used for authorization

 How to identify a buffer at the selected target?
• Tag (ses.match_bits) for tagged recv or memory key (ses.memory_key) for RMA
• Initiator ID (ses.initiator) if FI_DIRECTED_RECV is enabled
• Must be authorized with Job ID

17 © OpenFabrics Alliance

UET PROFILES

 UET covers a wide range of semantics and
capabilities
 Applications have different requirements,

often only need a subset
 Profiles allow specialized implementation

to simplify and optimize
 Three profiles

• AI Base: support *CCL and UD
• AI Full: all AI training & AI inferencing applications
• HPC: full-fledged HPC semantics, wide range of

applications

 Profiles are negotiated at initialization
• Part of libfabric endpoint address
• AI Full is not a subset of HPC, but can be used as if it

is with some restrictions (deferred treated as regular)

18 © OpenFabrics Alliance

HPCAI FULLAI BASE

MUSTMUSTMUSTNO_OP

4GB-14GB-11 MTUSEND

MUSTMUSTMUSTDATAGRAM SEND

MUSTMUSTMUSTTSEND (exact match)

MUSTMUSTTSEND (wildcard)

MUSTMUSTMUSTWRITE / WRITE IMM

MUSTMUSTREAD

MUSTMUSTMUSTNon-fetching Atomic

MUSTMUSTFetching Atomic

MUSTTagged Atomics

MUSTDeferrable SEND

MUSTDeferrable TSEND

MUSTRENDEZVOUS

OUTLINE

19 © OpenFabrics Alliance

Ultra Ethernet Overview

Libfabric in A Nutshell

Working with Libfabric over Ultra Ethernet

LIBFABRIC UET PROVIDER SOFTWARE ARCHITECTURE

20 © OpenFabrics Alliance

TO MAKE IT SIMPLE

 Libfabric UET provider follows the same provider API as other providers do

 However, the UET provider do have some details that may need special attention in
order to fully utilize the fabric features and avoid discovery errors

21 © OpenFabrics Alliance

Applications may just work by
simply asking for the provider

Will pick a few … refer to
the specs for more details

UET ADDRESS (ENDPOINT ADDRESS)

© OpenFabrics Alliance22

struct uet_addr {
uint8_t ver;
uint8_t reserved;
uint16_t flags;
uint16_t fep_cap;
uint16_t pid_on_fep;
struct uet_fa fa;
uint16_t start_resource_index;
uint16_t num_resource_indices;
uint32_t initiator_id;

};

FI_ADDR_UET

struct uet_fa {
union {

uint32_t v4;
uint8_t v6[16];

}
};

Bits for AI Base / AI Full / HPC

• Fields below valid?
• Relative / absolute addressing?
• IPv4 / IPv6?
• msg_size limited to MTU?

32 bytes32 bytes

16 bytes16 bytes

0

UET PROVIDER: DISCOVERY

© OpenFabrics Alliance23

int fi_getinfo(uint32_t version,
const char *node,
const char *service,
uint64_t flags,
const struct fi_info *hints,
struct fi_info **info);

must >= 2.0
non-NULL only when flags has FI_SOURCE
predefined service name (optional)
FI_SOURCE if node is non-NULL

ValueField

Must be FI_ADDR_UETaddr_format

NULL or a UET addresssrc_addr

Must be NULLdst_addr

ValuesFields

Partial address is returned: version / flags/ type / FA / start RI / FEP capabilities (red on previous slide)src_addr

Will be set to NULL.dst_addr

ENDPOINT ADDRESS ASSIGNMENT

 Local fabric address is available in info->src_addr returned from fi_getinfo()
 Full endpoint address is assigned when the endpoint is created

• A privileged entity is in charge of assigning endpoint address
• The privileged entity may reside in user space (e.g. as part of a provision system), the UET provider would talk to

the kernel driver, which will relay the request to the privileged entity
• The kernel driver may need to program the NIC with the info from the response (security, authorization)
• The kernel driver relay the address info back to the UET provider
 Info contained in address assignment request

• IP address, service
 Info contained in the request relayed by the kernel driver

• IP address, service, pid
 Info contained in the response to the kernel driver

• Full UET address, Job ID, security binding
 Info contained in the response relay back to the UET provider

• Full UET address, Job ID
 Full endpoint address is retrieved with fi_getname() call

24 © OpenFabrics Alliance

MEMORY REGION

 UET memory regions are always associated with endpoints
• mr_mode FI_MR_ENDPOINT is required (set via hints->domain_attr->mr_mode)
• After an MR is created with fi_mr_reg*(), extra steps are needed before it can be used:

 Memory keys have standard format (for both user supplied & provider chosen)

• I: Idempotent Safe. May be used as target for idempotent operations (operations can be applied more then once)
• O: Optimized. Support optimized non-matching headers (small headers having less bits for rkey)

25 © OpenFabrics Alliance

fi_mr_bind(mr, ep_fid, 0);
fi_mr_enable(mr);

I O reserved vendor specific
rkey

reserved rkey / index

O = 0
O = 1

6 bits 8 bits 36 bits 12 bits1b 1b

JOB ID & AUTHORIZATION

 Job ID identifies a group of processes that are allowed to communicate with each
other, i.e., belonging to the same “job”.
 Job ID is carried in the SES header and is used to authorize access to target buffer
 The assignment of Job ID can be complicated, but from user’s point of view, it’s either

passed in by the user or set by the provider
 In libfabric API, Job ID is passed in as “auth_key”, part of domain_attr, ep_attr, mr_attr.
 If auth_key is not set by the user, the provider would use the control API to get the Job

ID from the privileged entity, or use a fallback Job ID if such mechanism doesn’t exist
 Most applications deal with a single Job ID:

26 © OpenFabrics Alliance

Provider setUser set

auth_key_size = 0, auth_key = NULLauth_key_size = 3, auth_key = Job IDdomain_attr (default)

auth_key_size = 0, auth_key = NULLauth_key_size = 3, auth_key = Job IDep_attr (if not default)

auth_key_size = 0, auth_key = NULLauth_key_size = 3, auth_key = Job IDmr_attr (if not default)

AUTHORIZATION WITH MULTIPLE JOB IDS

 Previous mechanism can handle EPs, MRs with different Job IDs but each only handles
one
 Some applications need to have one EP handle more than one Job ID
 FI_AV_AUTH_KEY: allow author key be inserted into AV (to be used as “address”)

• fi_av_insert_auth_key: get an address representing all endpoints with the same auth_key
• fi_av_insert with FI_AUTH_KEY flag: get an address representing a specific endpoint with a specific auth_key
 Domain and endpoint must be opened with proper support

 Receive buffer posted with FI_DIRECTED_RECV enabled would only match sends with
the same auth_key as the src_addr

27 © OpenFabrics Alliance

User set, with FI_AV_AUTH_KEY

auth_key_size = FI_AV_AUTH_KEY, auth_key = NULLdomain_attr

auth_key_size = 0, auth_key = NULLep_attr

auth_key_size = sizeof(struct fi_mr_auth_key),
auth_key = pointer to struct fi_mr_auth_key

mr_attr

struct fi_mr_auth_key {
struct fid_av *av;
fi_addr_t src_addr;

};

DEAL WITH PROFILE LIMITATIONS

 Some profiles, especially AI Base, has limited capabilities
 Most of the limitations can be discovered via various attributes in the ‘fi_info’ structure
 One specific limitation need to be discovered differently

• The AI Base profile allows limiting send/recv to one MTU size, while supporting much larger RMA sizes
• info->ep_attr->max_msg_size is the maximum size among all ops
• To get/set size limit for individual category, need to use the fi_getopt() / fi_setopt() API

• The related option names are:

28 © OpenFabrics Alliance

int fi_getopt(struct fid *ep, int level, int optname, void *optval, size_t *optlen);
int fi_setopt(struct fid *ep, int level, int optname, const void *optval, size_t optlen);

FI_OPT_MAX_MSG_SIZE
FI_OPT_MAX_TAGGED_SIZE
FI_OPT_MAX_RMA_SIZE
FI_OPT_MAX_ATOMIC_SIZE

FI_OPT_MAX_INJECT_MSG_SIZE
FI_OPT_MAX_INJECT_TAGGED_SIZE
FI_OPT_MAX_INJECT_RMA_SIZE
FI_OPT_MAX_INJECT_ATOMIC_SIZE

OPERATION MAPPING

© OpenFabrics Alliance29

FI_EP_DGRAMFI_EP_RDMLibfabric API

UET_DATAGRAM_SENDUET_SENDfi_send

UET_DATAGRAM_SEND
UET_SEND

UET_DEFERRABLE_SEND#

UET_RENDEZVOUS_SEND#

fi_sendv / fi_sendmsg / fi_inject /
fi_senddata / fi_injectdata

N/A
UET_TAGGED_SEND

UET_TAGGED_DEFERRABLE_SEND#

UET_TAGGED_RENDEZVOUS_SEND#
fi_tsend* / fi_tinject*

N/AUET_READfi_read*

N/AUET_WRITEfi_write* / fi_inject_write*

N/AUET_ATOMICfi_atomic / fi_atomicv / fi_injectatomic

N/AUET_ATMIC, UET_TSEND_ATOMICfi_atomicmsg

N/AUET_FETCHING_ATOMICfi_fetch_atomic* / fi_compare_atomic*

depending on message size and profile in use

PACKET DELIVERY MODES

 Four modes defined in Packet Delivery Sublayer (PDS)
• ROD: Reliable Ordered Delivery, deliver once and only once
• RUD: Reliable Unordered Delivery, deliver once and only once
• RUDI: Reliable Unordered Delivery of Idempotent Operations, may deliver multiple times
• UUD: Unreliable Unordered Delivery, best effort

 Delivery mode is part of PDS header
• The UET provider choose the mode based on ordering requirement of operations (invisible to user)
• Mix of ROD and RUD/RUDI enables ordering message with unordered data  better performance

 Mapping guidelines for delivery modes

30 © OpenFabrics Alliance

Delivery modesProfileEndpoint type

UUD-FI_EP_DGRAM

ROD, RUDAI Base, AI FullFI_EP_RDM

ROD, RUD, RUDIHPCFI_EP_RDM

UET PROVIDER RUNTIME PARAMETERS

FunctionName

Path to optional service config fileUET_PROVIDER_SERVICE_PATH

Minimal message size to use rendezvous send UET_PROVIDER_MSG_RENDEZVOUS_SIZE

Minimal tagged message size to use rendezvous send UET_PROVIDER_TAGGED_RENDEZVOUS_SIZE

Maximum amount of data to send with the initial rendezvous
request

UET_PROVIDER_MAX_EAGER_SIZE

Optional override of default DSCP codepoint for data traffic
class

UET_PROVIDER_DEF_DATA_DC

Use a fallback Job ID if one cannot be obtained from the job
provisioning system

UET_PROVIDER_FALLBACK_JOBID_SUPPORT

Initiator ID for endpoints configured through the fallback Job ID
mechanism

UET_PROVIDER_INITIATOR_ID

31 © OpenFabrics Alliance

UPSTREAM INTEGRATION

 Status as of today
• No UET provider exists in upstream libfabric repo
• There is a reference provider implementation in UEC member private repo
• Vendors are working on their own UET providers

 Getting providers into upstream is highly encouraged!
 Libfabric core has many utility code that can be reused:

• HMEM support, dmabuf support
• MR cache, memory monitor
• Utility objects on which providers can build their objects: fabric, domain, endpoint, CQ, EQ, AV, etc

 Value add with utility providers
• Hooking providers: profiling, tracing, performance statistics
• Lnx -- combine multiple providers

• shm + network provider: cover or improve scale-up path
• multiple network provider / provider instance: multirail
• Requirement: support FI_PEER

32 © OpenFabrics Alliance

FOR MORE INFORMATION

 UEC Specification v1.0
• https://ultraethernet.org/wp-content/uploads/sites/20/2025/06/UE-Specification-6.11.25.pdf

 Libfabric man pages
• Current head: https://ofiwg.github.io/libfabric/main/man/
• Current head, all-in-one: https://ofiwg.github.io/libfabric/main/man/onepage.html
• v2.0.0: https://ofiwg.github.io/libfabric/v2.0.0/man/

 Libfabric source code:
• https://github.com/ofiwg/libfabric

 UET libfabric reference provider (for UEC member only):
• https://github.com/ultraethernet/uet-libfabric

 OpenFabrics Alliance (OFA)
• https://www.openfabrics.org

 Linux Foundation
• https://www.linuxfoundation.org

33 © OpenFabrics Alliance

THANK YOU
Jianxin Xiong

Intel Corporation

2025 OFA Webinar Series

