
Exploring OFA Sunfish

Brian Pan

Russ Herrell

2025 OFA Webinar Series

Independent OFA/Sunfish Contributor

Meet the Presenters: Brian Pan and Russ Herrell

Russ Herrell - Distinguished Technologist, Retired from Hewlett Packard Enterprise (HPE)

Russ recently retired from Hewlett Packard Labs of Hewlett Packard Enterprise, having worked for Bill and

Dave's companies in Fort Collins, Colorado for his entire career. He has designed 3D graphics engines,

management systems for large SMP business and technical computers, and specialized in complete

hardware/software solution architectures. Russ continues to work with the Open Fabric Alliance and

DMTF organizations on Sunfish, an open standard for management of disaggregated fabric resources

Brian Pan - Founder & Chief Executive Officer at H3 Platform

Brian Pan is the Founder and Chief Executive Officer of H3 Platform, a company specializing in innovative

PCIe switch boxes for the HPC industry. Brian's background demonstrates expertise in sales leadership and

business development. Prior to H3 Platform, Brian served as Sales Director at Qnap, contributing to the

company's retail operations. Before Qnap, Brian held the position of Sales Director at Zyxel Communications

Corp, a provider of broadband access solutions. Brian holds a Master of Business Administration from

National Chengchi University and a Bachelor's degree from National Cheng Kung University.

© OpenFabrics Alliance

Sunfish for CXL Fabric Management

Brian Pan

CEO

2025 OFA Webinar Series

Physical Cluster Architecture

© OpenFabrics Alliance4

System Architecture of CXL Deployment

5 © OpenFabrics Alliance

Physical Disaggregated Nodes

Fabric management
+

CXL switch
+

E3.S CXL Memory

Physical Cluster Architecture

6 © OpenFabrics Alliance

PCIe 5.0 x16 (CXL 2.0)

20 E3.S CXL Memory
Modules

CXL Hosts

CXL Memory Sharing Box
with CXL Switch

Host Adapter

1m CDFP Cable

Chassis Retimer

Logic Architecture of the Sunfish Management

© OpenFabrics Alliance7

The Sunfish Objective in Visual Form

8 © OpenFabrics Alliance

Sunfish Services

Hardware

Specific

Agent

Users, Apps, utilities,

monitors, Resource

Managers or Admins
R

E
S

T
fu

l
A

P
I

(R
F

/S
F

)

Sunfish Clients see

abstracted Fabric

Attached Resource

objects

Sunfish Services manages

the Redfish models of all

resources from multiple

hardware Agents

Sunfish Agents hide the

hardware specifics by

creating appropriate Redfish

models of resources

Sunfish defines the policies that Agents follow when creating resource models so
that Clients know how to interpret and manipulate them

CXL Switch
Managers-

Sunfish

H3 CXL
memory

appliance

9

10

Registration of CXL Memory Appliance to Sunfish

11 © OpenFabrics Alliance

Sunfish Core Services

Resources
Inventory

Redfish Tree
Management

Resources
Configuration

Events & logs

Fabric
Configuration

H3 Redfish Agent

Account
Service

Chassis

Fabrics

Managers

Aggregation
Service

1. Registration Event

2. Return Aggregation object

3. Resource Created

4. Agent tree crawling

THANK YOU
Brian Pan

H3 Platform

2025 OFA Webinar Series

Sunfish for CXL Fabric Management

Russ Herrell

2025 OFA Webinar Series

Independent OFA/Sunfish Contributor

Sunfish Overview

© OpenFabrics Alliance14

Sunfish Services

The Sunfish Open Fabric Management Framework

Composability

Layer

Swordfish

Agent

A
p

p
li
c

a
ti

o
n

 D
o

m
a

in Fabric

Resources

Monitoring

Clients

Resource

Inventory

Management Layer Hardware Layer

Redfish / Native

API Translation

CXL

Agent

R
E

S
T

fu
l

A
P

I
(R

F
/S

F
)

Data Store

Composition

Policies

Resource

Managers

(e.g.,

Compute,

FAM,

Storage,

Fabric)

RedFish

API

Vendor

Native API

A
d

m
in

is
tr

a
ti

o
n

 D
o

m
a

in

Data

Store

RF tree

management

Infrastructure

management

Systems

composition,

Systems update

App driven

system

reconfiguration

Events &

Logs

Authentication

Access Control

Events & Logs

EventsEvents

Resource

Configuration

Fabric

Configuration

CXL Fabric

Manager(s

)

Swordfish

Appliance

API Mgr

CXL

HW

CXL

HW

NVMe

HW

NVMe

HW

NVMe

HW

API API

NVMeoF

Agent

NVMeoF

Fabric

Manager

© OpenFabrics Alliance15

Redfish Fabric Modeling Basics

▪ Redfish Fabric Concepts:
• Initiators issue fabric requests

• Targets satisfy these requests

• Switches route these requests and
their responses between the
Initiators and Targets

• Physical Links connecting
components are modeled as links
between Ports on the components

• The “Fabric” consists of Initiator and
Target Endpoints connected
physically to Ports on the Switches
doing the routing

• The physical topology is given by
the physical connectivity of all Ports

• Managing the Switches is essential
to managing the “Fabric”

• Redfish enables traffic between a
specific Initiator Endpoint and a
specific Target Endpoint by creating
a Zone containing them both and
declaring a Connection between
them

16© OpenFabrics Alliance

Initiators Targets

Host1

Host2

1

1

2

2

s
w

it
c
h

1 Mem1

Storage1

Accelerator1

1

2

3

4

5

s
w

it
c
h

2 Mem2

Storage2

Accelerator2

1

2

3

4

5

1

1

1

1

1

1

Fabric Resource Appliance

Redfish focuses on modeling of hardware

Sunfish Fabric Modeling Basics

▪ Sunfish Fabric Concepts:
• Agents or the hardware managers give

each Redfish object they intend to
manage a Redfish namespace URI and
Id of the Agent’s choosing.

• All future conversations (requests,
responses, events) between an Agent
and the Sunfish Server must use the
Agents’ URIs

• Sunfish Agents on the same fabric shall
use the same Fabric object name and
UUID when registering and uploading
their Redfish objects to the Sunfish
Server

• Sunfish will ‘share’ a common Fabric
object with multiple Agents

• Sunfish assumes every Chassis and
Systems object has one, and only one
primary Agent that ‘owns’ the object

• Sunfish Agents are fabric specific

• Sunfish Agents know when a Port they
manage is linked to a Port they do not
manage

17© OpenFabrics Alliance

Sunfish focuses on management of hardware

Sunfish Reference Code Notes

© OpenFabrics Alliance18

Sunfish Server, Agent, and Lib

▪ sunfish_library_reference
• The Sunfish_library_reference contains

several core functions designed to sort and
execute requests (GET, POST, PATCH,
DELETE) against various Redfish objects
(Switches, Ports, Chassis, MemoryDomains,
etc.), read and write the Sunfish resource
storage, and check for the need to forward
such requests to the owning Agent.

• Reading and Writing the resource storage
requires a minimum set of Resource objects,
so there is a required Resources directory as
part of the actual repo.

• These same core functions are needed by
most Agents to manage the Agent’s local
Redfish data base. Therefor, these core
routines are built into a Class library and
distributed via Wheel.

• The sunfish_library_reference repo can be
downloaded from github, built, and tested
(somewhat) standalone.

19© OpenFabrics Alliance

Sunfish

Server

Flask API

(app.py)

Sunfish_lib_core

Resources

(DB)

server_start

_Resources

app_sunfish

_server.py

Sunfish_plugins: Redfish

Event Handlers,

backend_FS storage

Sunfish Server, Agent, and Lib

▪ sunfish_server_reference
• The Sunfish_server_reference contains these key pieces:

• Several versions of an app.py file to be run via Flask

• The main differences between them are in the conf{}
configuration structure

• A requirements.txt file to be used to create the proper virtual
environment

• A Resources directory which would be the default minimum
Redfish Resources to allow the core-lib library to initialize

• A Scripts directory which contains several useful scripts for
cloning the correct repos, setting up useful mockup Resources,
launching multiple instances of the different server flavors
(Sunfish Service, Agent 1, Agent 2, NVMe_Agent)

• A mockups directory which contains a few useful mockup fabric
topology starting Resources that will replace the default minimum
Resources

• Copy the appropriate app_x_server.py file to the app.py file, then set up
which mockups to use within the server to set the flavor of the server
functionality that appears when this server instance is launched.
Example mockups available:

• A basic Sunfish Server

• A single NVMeoF Agent

• Two CXL Agents (Fabric Manager and Appliance Manager)

20© OpenFabrics Alliance

Sunfish

Server

Flask API

(app.py)

Sunfish_lib_core

Resources

(DB)

server_start_

Resources

app_XXXXX_

server.py

Sunfish_plugins: Redfish

Event Handlers,

backend_FS storage

Scripts

Sunfish Server, Agent, and Lib

▪ Sunfish hierarchical aggregation

• Since the sunfish_server_reference serves as both an

Agent frontend as well as an aggregation function

which uploads Redfish Resource trees, the potential is

there to have multiple levels of Agents aggregating

resources from very large-scale installations.

• Large scale applications would be more appropriately

implemented in some language other than Python

21© OpenFabrics Alliance

Sunfish

Server

CXL Agent

Aggregator

CXL Agent

Aggregator

CXL Agent

Aggregator

CXL Agent

CXL Agent

CXL Agent

CXL Agent

CXL Agent

CXL Agent

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

HW Mgr

Sunfish Use Cases

© OpenFabrics Alliance22

Sunfish and a single Resource Appliance

23© OpenFabrics Alliance

Redfish

API

CXL

HW

Sunfish

Agent

(wrapper)Sunfish

Service

▪ Sunfish Concepts:
• Fabric Resource Appliance has a local hardware manager

• Local hardware manager may or may not have a Redfish API

• Sunfish Agent could be quite simple if the hardware manager
implements a Sunfish compliant Redfish API

• Sunfish Service will upload and maintain accurate Redfish
resource models for the Switches, Endpoint details and any
component state made available for Endpoints within the
appliance.

• Target Endpoint components will likely be modeled to enough
detail to support basic resource allocations to the Hosts.

• NOTE: Hosts are probably only described as associated
Endpoints and Switch Ports. Hosts are not likely to have
associated Redfish Systems models, as the appliance hardware
manager does not own the Hosts.

• Details about which Host is attached to which Switch Port and
thus is which Endpoint must be given by another entity, for
example a Host manager.

▪ If the hardware manager has a Redfish API, and
only knows about the Targets, what is the Sunfish
Value-add?
• Practically nothing in this degenerate case.

• However, just add a couple more appliances….

Redfish

API

Redfish

API

Redfish

API ?

Sunfish and Multiple Resource Appliances

24© OpenFabrics Alliance

Redfish

API

CXL

HW

Sunfish

Agent

(wrapper)

Sunfish

Service

▪ Multiple Appliances, topology 1:
• Two or more independent appliances – two or more independent

Fabrics

• With no connectivity between Hosts on Appliance A and Targets
on Appliance B (and vice versa), the Sunfish Service will simply
treat all resources of each hardware manager as isolated to their
respective Fabrics.

• Every isolated Fabric must have their own Redfish namespace!

• It is possible that every appliance manager wishes to call its
Fabric and its Chassis objects the same Redfish URIs and Ids,
which means any entity trying to aggregate the resources of all
the appliances into one Redfish service root (API namespace)
needs to disambiguate the resulting name conflicts.

• For example, every CXL fabric object would be identified as
“/redfish/v1/Fabrics/CXL”

• In such a topology, Sunfish Service provides a simple
aggregation function that renames all namespace conflicts so
that Sunfish clients only see one Redfish namespace, the
Sunfish namespace.

• Sunfish Service translates any renamed URIs back to the
original URI given by the Agent that uploaded the object when
forwarding client Redfish commands to the owning Agent.

• Sunfish also renames (translates) all navigation links to a
renamed object when they are encountered in other objects
within the same Fabric namespace (same Agent upload).

Redfish

API

Redfish

API

Redfish

API ?

Redfish

API

CXL

HW

Sunfish

Agent

(wrapper)

Redfish

API

Redfish

API ?

Sunfish and Multiple Resource Appliances

25© OpenFabrics Alliance

Redfish

API

CXL

HW

Sunfish

Agent

(wrapper)

Sunfish

Service

▪ Multiple Appliances, topology 2:
• Two or more appliances with physical links to every Host

• With potential connectivity between any Host and any
Endpoint on any appliance Switch, this is a single fabric
with a single fabric namespace

• Every Endpoint needs to be a subordinate of the same
Redfish Fabric model, even if different appliance managers
use different fabric names. This is the opposite problem
from independent fabrics.

• In such a topology, Sunfish requires the fabric Admin to
force all Sunfish Agents to upload the identical
/redfish/v1/Fabrics/x object, in which the Redfish property
“UUID” is identical across all Agents needing to be in the
common Fabric and its namespace. If both the URI and the
UUID of Fabric object match a pre-existing object in the
Sunfish namespace, Sunfish will ‘share’ that Fabric object
among all Agents attempting to upload another instance.

• Other than a Fabric object, Sunfish Service still renames
any object URIs that conflict among multiple Agent
namespaces. For example, all Agents may assign Endpoint
URIs and Ids sequentially starting at 1.

• Sunfish still also renames (translates) all navigation links to
a renamed object when they are encountered in other
objects within the same Fabric namespace (same Agent
upload).

Redfish

API

Redfish

API

Redfish

API ?

Redfish

API

CXL

HW

Sunfish

Agent

(wrapper)

Redfish

API

Redfish

API ?

Sunfish and Multiple Switch Layers

26© OpenFabrics Alliance

Redfish

API

CXL

HW
Sunfish

Agent

Sunfish

Service

▪ Multiple Switch Layers:
• All to All switched topology

• With potential connectivity between any Host and any
Endpoint on any appliance Switch, this is a single fabric
with a single fabric namespace

• The same problems of creating a single Redfish
namespace for all entities on the Fabric as discussed on
previous slides exist in multi-layer switch topologies.

• However, the new Switch to Switch links (in red, sometimes
called ‘fabric links’ vs ‘endpoint links’) introduce several new
problems.

• Example: Redfish Connections and Zones are used to
define which Endpoints may exchange traffic with which
other Endpoints, but they do not contain any methods to
denote which Switch to Switch links may be permitted or
prohibited in the path. The Sunfish team is addressing this
limitation with the Redfish team.

• Example: Switch to Switch links may associate two Ports
being managed by different Agents / hardware managers.
Sunfish calls these Switch to Switch links that cross
manager boundaries, “Boundary Links”. Sunfish library
event handler code addresses this issue.

Redfish

API

Redfish

API

Redfish

API ?

Redfish

API

CXL

HW
Sunfish

Agent

Redfish

API

Redfish

API ?

Switch

API

CXL

HW

Sunfish

Agent

(FM)

Summary

© OpenFabrics Alliance27

Summary

28© OpenFabrics Alliance

Redfish

API

CXL

HW

Sunfish

Agent

(wrapper)

Sunfish

Service

▪ What is available from Sunfish Repo:
• Sunfish_library_reference has core routines to manipulate Redfish

fabric objects and manage a Redfish database

• Sunfish_server_reference has routines and scripts that enable
users to develop API servers, configured as one Sunfish Service
fed by some number of Agents using mocked up Resources.

▪ Why use Sunfish?
• Scaling

• When dealing with numerous hardware managers, Sunfish
architecture keeps the workload per Agent to a manageable
level.

• Sunfish handles multi-Agent namespace collisions so clients are
not exposed to the bookkeeping gymnastics that are required in
the administration of installations of even modest size.

• Portability across vendors, across multiple fabric configurations and
across hardware revisions

• Redfish-based configuration and control scripts can isolate
testing and operating scripts from hardware changes.

Redfish

API

Redfish

API

Redfish

API ?

Redfish

API

CXL

HW

Sunfish

Agent

(wrapper)

Redfish

API

Redfish

API ?

Switch

API

CXL

HW

Sunfish

Agent

(FM)

Sunfish documentation: https://openfabrics.github.io/sunfish_docs/Sunfish%20Doc.html.

Sunfish GitHub repository: https://github.com/OpenFabrics/sunfish_library_reference

https://github.com/OpenFabrics/sunfish_library_reference

THANK YOU

Russ Herrell
Individual Contributor

OFA Sunfish Project

2025 OFA Webinar Series

Q & A

© OpenFabrics Alliance30

THANK YOU

2025 OFA Webinar Series

	Slide 1: Exploring OFA Sunfish
	Slide 2: Meet the Presenters: Brian Pan and Russ Herrell
	Slide 3: Sunfish for CXL Fabric Management
	Slide 4: Physical Cluster Architecture
	Slide 5: System Architecture of CXL Deployment
	Slide 6: Physical Cluster Architecture
	Slide 7: Logic Architecture of the Sunfish Management
	Slide 8: The Sunfish Objective in Visual Form
	Slide 9
	Slide 10
	Slide 11: Registration of CXL Memory Appliance to Sunfish
	Slide 12: THANK YOU
	Slide 13: Sunfish for CXL Fabric Management
	Slide 14: Sunfish Overview
	Slide 15: The Sunfish Open Fabric Management Framework
	Slide 16: Redfish Fabric Modeling Basics
	Slide 17: Sunfish Fabric Modeling Basics
	Slide 18: Sunfish Reference Code Notes
	Slide 19: Sunfish Server, Agent, and Lib
	Slide 20: Sunfish Server, Agent, and Lib
	Slide 21: Sunfish Server, Agent, and Lib
	Slide 22: Sunfish Use Cases
	Slide 23: Sunfish and a single Resource Appliance
	Slide 24: Sunfish and Multiple Resource Appliances
	Slide 25: Sunfish and Multiple Resource Appliances
	Slide 26: Sunfish and Multiple Switch Layers
	Slide 27: Summary
	Slide 28: Summary
	Slide 29: THANK YOU
	Slide 30: Q & A
	Slide 31: THANK YOU

