2025 OFA Webinar Series

Exploring OFA Sunfish

Brian Pan
Russ Herrell

Meet the Presenters: Brian Pan and Russ Herrell

Brian Pan - Founder & Chief Executive Officer at H3 Platform

Brian Pan is the Founder and Chief Executive Officer of H3 Platform, a company specializing in innovative
PCle switch boxes for the HPC industry. Brian's background demonstrates expertise in sales leadership and
business development. Prior to H3 Platform, Brian served as Sales Director at Qnap, contributing to the
company's retail operations. Before Qnap, Brian held the position of Sales Director at Zyxel Communications
Corp, a provider of broadband access solutions. Brian holds a Master of Business Administration from
National Chengchi University and a Bachelor's degree from National Cheng Kung University.

Russ Herrell - Distinguished Technologist, Retired from Hewlett Packard Enterprise (HPE)

Russ recently retired from Hewlett Packard Labs of Hewlett Packard Enterprise, having worked for Bill and
Dave's companies in Fort Collins, Colorado for his entire career. He has designed 3D graphics engines,
management systems for large SMP business and technical computers, and specialized in complete
hardware/software solution architectures. Russ continues to work with the Open Fabric Alliance and
DMTF organizations on Sunfish, an open standard for management of disaggregated fabric resources

© OpenFabrics Alliance

2025 OFA Webinar Series

Sunfish for CXL Fabric Management

Brian Pan

Physical Cluster Architecture

© OpenFabrics Alliance

System Architecture of CXL Deployment

Physical Disaggregated Nodes

—— Compute 3:[;]} il::]:E ’

- o BRI

Fabric management

E—— Compute S i
— Compute CXL SWitCh

+
— E3.S CXL Memory

5 © OpenFabrics Alliance

Physical Cluster Architecture

| CXL Hosts

[j % Host Adapter

1m CDFP Cable

CXL Memory Sharing Box

with CXL Switch 20 E3.S CXL Memory

Modules

6 © OpenFabrics Alliance

Logic Architecture of the Sunfish Management

© OpenFabrics Alliance

Sunfish Clients see
abstracted Fabric
Attached Resource
objects

Users, Apps, utilities,

monitors, Resource
Managers or Admins

The Sunfish Objective in Visual Form & : i

RESTful API (RF/SF)

Sunfish V "

Sunfish Services manages Sunfish Agents hide the
the Redfish models of all hardware specifics by
resources from multiple creating appropriate Redfish

hardware Agents models of resou

Sunfish Services

Sunfish defines the policies that Agents follow when creating resource models so
that Clients know how to interpret and manipulate them

SUNFISH SERVER REGISTRATION I I

M EENEEEENERERD

(D Registration to Sunfish server
@ Provide appliance information

1. Appliance Boot Up

H3 CXL Memory Appliance (1) System information
. Slg\gah Agent (2 CXL memory modules in the appliance
m (@ CXL topology and port configuration — OpenFabrics Alliance

CXL MEMORY BINDING

4. Server Detects and Accesses CXL Memory

(1 Server find the added memory

(2 Server can read/ write these added CXL memory
0)
(L.

3. Issue Commands to Bind &
Unbind CXL Memory Appliance

H3 CXL Memory Appliance” (D Bind the memory to server

« Sunfish Agent @ Update the resource allocation
« mCPU

© OpenFabrics Alliance

Registration of CXL Memory Appliance to Sunfish &

Sunfish Core Services

Resources
Inventory

Redfish Tree
Management

Resources
Configuration

Fabric
Configuration

Events & logs

1. Registration Event

<
<«

2. Return Aggregation object

v

3. Resource Created

<&
<«

4. Agent tree crawling

A 4

11

Sunfish ~J

H3 Redfish Agent

Account

Service

Chassis

Fabrics

Managers

Aggregation
Service

© OpenFabrics Alliance

2025 OFA Webinar Series

THANK YOU

Brian Pan

2025 OFA Webinar Series

Sunfish for CXL Fabric Management

Russ Herrell

Sunfish Overview

© OpenFabrics Alliandé

The Sunfish Open Fabric Management Framework

Sunfish

Clients Management Layer [Hardware Layer]

Sunfish Services

App driven
system
reconfiguration

Resource
Inventory

RF tree
M management
Resource Resource
Managers ____Configuration |

€.9. Fabric
Configuration

Application Domain

Authentication

Access Control

Systems
composition, Events & Logs

Systems update T

—
RedFish
API >
e Vendor
Comiposability —

Inf t t - Native API
nfrastructure

K 1 y j
management

b © OpenFabrics Alliance

Administration Domain

Redfish Fabric Modeling Basics

. Redflsh Fabric Concepts:
Initiators issue fabric requests
Targets satisfy these requests

Switches route these requests and
their responses between the
Initiators and Targets

Physical Links connecting
components are modeled as links
between Ports on the components

The “Fabric” consists of Initiator and
Target Endpoints connected
physically to Ports on the Switches
doing the routing

The physical topology is given by
the physical connectivity of all Ports
Managing the Switches is essential
to managing the “Fabric”

Redfish enables traffic between a
specific Initiator Endpoint and a Fabric Resource Appliance
specific Target Endpoint by creating
a Zone containing them both and
declaring a Connection between
them

Initiators Targets

Accelerator2

Redfish focuses on modeling of hardware

© OpenFabrics Alliandé

Sunfish Fabric Modeling Basics

= Sunfish Fabric Concepts:

Agents or the hardware managers give
each Redfish object they intend to
manage a Redfish namespace URI and
|d of the Agent’s choosing.

All future conversations (requests,
responses, events) between an Agent
and the Sunfish Server must use the
Agents’ URIs

Sunfish Agents on the same fabric shall
use the same Fabric object name and
UUID when registering and uploading
their Redfish objects to the Sunfish
Server

Sunfish will ‘share’ a common Fabric
object with multiple Agents

Sunfish assumes every Chassis and
Systems object has one, and only one
primary Agent that ‘owns’ the object

Sunfish Agents are fabric specific

Sunfish Agents know when a Port they
manage is linked to a Port they do not
manage

Initiators Targets

Accelerator2

Fabric Resource Appliance
A

y

h

Sunfish focuses on management of hardware

© OpenFabrics Alliand&

Sunfish Reference Code Notes

© OpenFabrics Alliand8

Sunfish Server, Agent, and Lib

sunfish_library reference

The Sunfish_library reference contains
several core functions designed to sort and
execute requests (GET, POST, PATCH,
DELETE) against various Redfish objects
(Switches, Ports, Chassis, MemoryDomains,
etc.), read and write the Sunfish resource
storage, and check for the need to forward
such requests to the owning Agent.

Reading and Writing the resource storage
requires a minimum set of Resource objects,
so there is a required Resources directory as
part of the actual repo.

These same core functions are needed by
most Agents to manage the Agent’s local
Redfish data base. Therefor, these core
routines are built into a Class library and
distributed via Wheel.

The sunfish_library reference repo can be
downloaded from github, built, and tested
(somewhat) standalone.

Sunfish_plugins: Redfish

Resources
H <=

© OpenFabrics Alliangé

Sunfish Server, Agent, and Lib

sunfish_server_reference
® The Sunfish_server_reference contains these key pieces:
® Several versions of an app.py file to be run via Flask

® The main differences between them are in the conf{}
configuration structure

A requirements.txt file to be used to create the proper virtual
environment

A Resources directory which would be the default minimum Flask API
Redfish Resources to allow the core-lib library to initialize

A Scripts directory which contains several useful scripts for

cloning the correct repos, setting up useful mockup Resources,
launching multiple instances of the different server flavors _ . ;
(Sunfish Service, Agent 1, Agent 2, NVMe_Agent) Sunfish_plugins: Redfish

A mockups directory which contains a few useful mockup fabric Sunfish lib core Event Handlers
topology starting Resources that will replace the default minimum
Resources

Copy the appropriate app_x_server.py file to the app.py file, then set up Resources
which mockups to use within the server to set the flavor of the server =
functionality that appears when this server instance is launched.
Example mockups available:

® A basic Sunfish Server
¢® Asingle NVMeoF Agent
® Two CXL Agents (Fabric Manager and Appliance Manager)

© OpenFabrics Allian2é

Sunfish Server, Agent, and Lib

= Sunfish hierarchical aggregation

Since the sunfish_server_reference serves as both an
Agent frontend as well as an aggregation function
which uploads Redfish Resource trees, the potential is
there to have multiple levels of Agents aggregating
resources from very large-scale installations.

Large scale applications would be more appropriately
implemented in some language other than Python

Sunfish
Server

CXL Agent
Aggregator

CXL Agent
Aggregator

CXL Agent
Aggregator

CXL Agent

CXL Agent

CXL Agent

CXL Agent

CXL Agent

CXL Agent

© OpenFabrics Alliangé

Sunfish Use Cases

© OpenFabrics Alliange

Sunfish and a single Resource Appliance

= Sunfish Concepts: Initiators Targets
Fabric Resource Appliance has a local hardware manager
Local hardware manager may or may not have a Redfish API

Sunfish Agent could be quite simple if the hardware manager
implements a Sunfish compliant Redfish API

Sunfish Service will upload and maintain accurate Redfish
resource models for the Switches, Endpoint details and any
component state made available for Endpoints within the
appliance.

Target Endpoint components will likely be modeled to enough G IR
detail to support basic resource allocations to the Hosts.

NOTE: Hosts are probably only described as associated
Endpoints and Switch Ports. Hosts are not likely to have
associated Redfish Systems models, as the appliance hardware
manager does not own the Hosts. Redfish Redfish Redfish

Details about which Host is attached to which Switch Port and AP AP APl ?
thus is which Endpoint must be given by another entity, for
example a Host manager.

If the hardware manager has a Redfish API, and

only knows about the Targets, what is the Sunfish

Value-add?

* Practically nothing in this degenerate case.

* However, just add a couple more appliances....

Fabric Resource Appliance

© OpenFabrics Allianga

Sunfish and Multiple Resource Appliances

Multlple Appliances, topology 1:

* Two or more independent appliances — two or more independent
Fabrics

With no connectivity between Hosts on Appliance A and Targets
on Appliance B (and vice versa), the Sunfish Service will simply
treat all resources of each hardware manager as isolated to their
respective Fabrics.

Every isolated Fabric must have their own Redfish namespace!

It is possible that every appliance manager wishes to call its
Fabric and its Chassis objects the same Redfish URIs and Ids,
which means any entity trying to aggregate the resources of all
the appliances into one Redfish service root (APl namespace)
needs to disambiguate the resulting name conflicts.

» For example, every CXL fabric object would be identified as
“/redfish/v1/Fabrics/CXL”

In such a topology, Sunfish Service provides a simple

aggregation function that renames all namespace conflicts so Redfish Redfish
that Sunfish clients only see one Redfish namespace, the API AP| ?
Sunfish namespace. Redfish

Sunfish Service translates any renamed URIs back to the API
original URI given by the Agent that uploaded the object when
forwarding client Redfish commands to the owning Agent.

Sunfish also renames (translates) all navigation links to a
renamed object when they are encountered in other objects
within the same Fabric namespace (same Agent upload).

Redfish Redfish
API API ?

© OpenFabrics Allian2é

Sunfish and Multiple Resource Appliances

= Multiple Appliances, topology 2:
* Two or more appliances with physical links to every Host

* With potential connectivity between any Host and any
Endpoint on any appliance Switch, this is a single fabric
with a single fabric namespace

Every Endpoint needs to be a subordinate of the same
Redfish Fabric model, even if different appliance managers
use different fabric names. This is the opposite problem
from independent fabrics.

In such a topology, Sunfish requires the fabric Admin to
force all Sunfish Agents to upload the identical
/redfish/v1/Fabrics/x object, in which the Redfish property
“‘UUID” is identical across all Agents needing to be in the .
common Fabric and its namespace. If both the URI and the Fabric Resource Applance
UUID of Fabric object match a pre-existing object in the
Sunfish namespace, Sunfish will ‘share’ that Fabric object Redfish Redfish
among all Agents attempting to upload another instance. API APl ?

Other than a Fabric object, Sunfish Service still renames Redfish
any object URlIs that conflict among multiple Agent API
namespaces. For example, all Agents may assign Endpoint

URIs and Ids sequentially starting at 1.

Sunfish still also renames (translates) all navigation links to
a renamed object when they are encountered in other
objects within the same Fabric namespace (same Agent
upload).

Redfish Redfish
API API ?

© OpenFabrics Allian2é

Sunfish and Multiple Switch Layers

= Multiple Switch Layers:
* All to All switched topology

With potential connectivity between any Host and any
Endpoint on any appliance Switch, this is a single fabric
with a single fabric namespace

The same problems of creating a single Redfish
namespace for all entities on the Fabric as discussed on
previous slides exist in multi-layer switch topologies.

Fabric Switch
Enclosure

However, the new Switch to Switch links (in red, sometimes i '
called ‘fabric links’ vs ‘endpoint links’) introduce several new .
problems. S

Example: Redfish Connections and Zones are used to
define which Endpoints may exchange traffic with which
other Endpoints, but they do not contain any methods to Redfish Redfish
denote which Switch to Switch links may be permitted or API AP| ?
prohibited in the path. The Sunfish team is addressing this Redfish

limitation with the Redfish team. AP | |
Redfish Redfish

Example: Switch to Switch links may associate two Ports AP AP| ?
being managed by different Agents / hardware managers.

Sunfish calls these Switch to Switch links that cross

manager boundaries, “Boundary Links”. Sunfish library

event handler code addresses this issue.

© OpenFabrics

© OpenFabrics Alliangé

= What is available from Sunfish Repo:

* Sunfish_library reference has core routines to manipulate Redfish Redfish Redfish
fabric objects and manage a Redfish database API AP| ?

* Sunfish_server_reference has routines and scripts that enable zgf'ﬁSh

users to develop API servers, configured as one Sunfish Service ﬁ
fed by some number of Agents using mocked up Resources.

= Why use Sunfish?
* Scaling
* When dealing with numerous hardware managers, Sunfish

Redfish Redfish
API API ?

architecture keeps the workload per Agent to a manageable
level.

» Sunfish handles multi-Agent namespace collisions so clients are
not exposed to the bookkeeping gymnastics that are required in
the administration of installations of even modest size.

* Portability across vendors, across multiple fabric configurations and
across hardware revisions

+ Redfish-based configuration and control scripts can isolate
testing and operating scripts from hardware changes.

Sunfish documentation: https://openfabrics.github.io/sunfish_docs/Sunfish%20Doc.html.
Sunfish GitHub repository: https://github.com/OpenFabrics/sunfish_library reference
https://github.com/OpenFabrics/sunfish_library | reference

© OpenFabrics Allian2é8

2025 OFA Webinar Series

THANK YOU

Russ Herrell

© OpenFabrics Alliandé

2025 OFA Webinar Series

THANK YOU

	Slide 1: Exploring OFA Sunfish
	Slide 2: Meet the Presenters: Brian Pan and Russ Herrell
	Slide 3: Sunfish for CXL Fabric Management
	Slide 4: Physical Cluster Architecture
	Slide 5: System Architecture of CXL Deployment
	Slide 6: Physical Cluster Architecture
	Slide 7: Logic Architecture of the Sunfish Management
	Slide 8: The Sunfish Objective in Visual Form
	Slide 9
	Slide 10
	Slide 11: Registration of CXL Memory Appliance to Sunfish
	Slide 12: THANK YOU
	Slide 13: Sunfish for CXL Fabric Management
	Slide 14: Sunfish Overview
	Slide 15: The Sunfish Open Fabric Management Framework
	Slide 16: Redfish Fabric Modeling Basics
	Slide 17: Sunfish Fabric Modeling Basics
	Slide 18: Sunfish Reference Code Notes
	Slide 19: Sunfish Server, Agent, and Lib
	Slide 20: Sunfish Server, Agent, and Lib
	Slide 21: Sunfish Server, Agent, and Lib
	Slide 22: Sunfish Use Cases
	Slide 23: Sunfish and a single Resource Appliance
	Slide 24: Sunfish and Multiple Resource Appliances
	Slide 25: Sunfish and Multiple Resource Appliances
	Slide 26: Sunfish and Multiple Switch Layers
	Slide 27: Summary
	Slide 28: Summary
	Slide 29: THANK YOU
	Slide 30: Q & A
	Slide 31: THANK YOU

