2025 OFA Webinar Series
FROM SLINGSHOT TO ULTRA ETHERNET:

BUILDING A TRANSPORT STANDARD FOR LIBFABRIC

Keith D Underwood

HP™



MEET THE PRESENTER: Keith D. Underwood, HPE

Keith Underwood is a Senior Distinguished Technologist in the HPE High
Performance Networking Business Unit where he leads next generation NIC
architecture definition. He is the editor of the UEC Transport Semantic
specification and an active contributor to the UEC Transport definition. Prior to
joining Cray, Keith was a founding member of the Omni-Path team at Intel and
led the Omni-Path 2 NIC architecture. He was part of the team that created the
Portals 4 APl that seeded the Libfabric definition, and was a key contributor to
developing the MPI-3 RMA extensions.

2 © OpenFabrics Alliance



INTRODUCTION TO THE
ULTRA ETHERNET CONSORTIUM (UEC)

© OpenFabrics Alliance



A GROWING CONSORTIUM

AMD ARISTA ©BROADCOM '<|:I|ls' élo" SVIDEN

H p E intel 00 Meta % Microsoft ORACLE

Oumcs  AARRCUS gt ité\E/%L:EE i b oo ACCENNK  awwwe  [associcvs s Phavradine @ losAlames Hhvenvene  TiMicROTHR  plcron’
,,,,,
cadence & SORNELS oo ) enfabrica Fﬁz miarg  centec ciena a:\g‘ix U SoMRA molex nesery numascae h Qumulo  (Ri)vos
T=s:  Junper  awieser (S {ICREDO  deen  DRIVENETS  Scoosasa ° e SESHECS  SaMsNGsDs s SAPEON
[Hmwvee  H3C NOKIA  @nvioia SRskssd pufiTou GocdeCoud  ararrcore Mgoror  TFRAEO sscn commuTne SOTECH <. Tencent yfSace
O purestoracE  Qualconm Ospirer\t SYNoPsys ZTE I:FI )—‘{ IIJ . infusion- (@ KALRAY oo ZI\N Xglyht - :f; ) ﬁ“ﬁi.ﬁ'lﬁ BE

*not all members listed
snapshot as of 2024-10

Mission:
Advance an Ethernet-Based Open, Interoperable, High-Performance
Full-Stack architecture to meet the Growing Demands of Al and HPC at Scale

3 >100 member companies “eueshenees
Ultra%,iﬂn? rice >1300 active participants

4 © OpenFabrics Alliance


http://ultraethernet.org/

BUILDING A STANDARD FOR A FULL NETWORK STACK

Enabling Al and HPC at the Largest Scale

= The first new network standard in 25
years

* Released 1.0 June 2025 .

Lz| SOFTWARE Workgroup
= Many active working groups covering
the entire stack

* Many layers .

* One specification

TRANSPORT Workgroup

COMPLIANCE

6‘9 LINK Workgroup

c PERFORMANCE & DEBUG

fl STORAGE
&5 MANAGEMENT

5/}(% 00#(/0_4/"&6/ Lo a,v/&t/}y standards .

" The spec is big
N
. %o PHYSICAL Workgroup

UEC is a JDF project and an
International Standards Organization

©

5 © OpenFabrics Alliance



A LITTLE HISTORY

© OpenFabrics Alliance



ULTRA ETHERNET: AN ORIGIN STORY

" In the early 1990s...
* Nobody gave webinars....
° Ethernet looked like this...
* And supercomputers didn’t use Ethernet

= A supercomputer was shipped that used
connections
* And didn’t have enough memory to launch an application
* People learned that connections were bad
 Although not everyone got the memo
° A new operation system was born (SUNMOS)
« With a networking stack that did not use connections
» They retro-named that networking stack Portals 0.0

7 © OpenFabrics Alliance



CONNECTIONS AND NETWORKS: WHAT WENT WRONG?

When you have a hammer, everything looks like a nail

= |f you give an architect a connection...
* They will want to make that connection ordered (especially if it is 1999)
* Just to keep the hardware simple

= When they have an ordered connection, they will want to
optimize around it....
* They will only put the addressing information on the first packet of the message
* They will use the ordered connection to manage resource exhaustion
* They will embed the ordered connection in the error model

= Once they have used the connection for optimization, they
will want to tangle it up with the semantics...
* They will use the connection to pick the destination buffer
* And, the security of that buffer will depend on the connection

= When they tangle the connection up with the semantics...
* They will want the user to set it up

= When user software programs around the connection...
* Itis hard to find your way back out

Image: Al Generated

8 © OpenFabrics Alliance



SEMANTICS VS RELIABILITY: A NECESSARY SEPARATION

Reliability and Ordering Semantics
= Did the packet get there?

* Loss detection

What do | do with that packet?

* |Is it a part of a larger message?
* How big is the message?

* Retransmits * Where does it go in the message?
* When do | need to give up on a packet getting there? . x\:)hdeerg is that message going at the target

“ gy s . »
" Did it need to be in order * Which job and which process in that job?

* |f so, was it? * Which queue in that process?
= Was it a duplicate? What is that message supposed to do?

. * Is it a write or a read?
] I -
yplcal tools: * A send? or a tagged send that needs matching?

* Sequence numbers * Or, is it an atomic? If so, what is the operation and
. Prob ket datatype?

robe packets = What is the behavior of failure?
* Timeouts * What do | do if the target process wasn’t there?

* How do | handle resource exhaustion?
* What happens if there was an address translation failure?

* Retransmit limits

9 © OpenFabrics Alliance



DELIVERING RELIABILITY AT MASSIVE SCALE

Semantic Sublayer sees a Reliable Network

= Semantic layer makes packets, and the
reliability layer makes sure they get there

* Many approaches available, and the choice is
transparent to the upper layers

= Not that long ago: “just build a reliable
network” was viable
* Lasted from ASCI Red to Cray Aries

* Careful design and link level retry meant that all the
packets got through

* 50 Gbps signaling (and beyond) is a more difficult
regime
= |solating reliability at the network layer
enables less state

* Reliability can be NIC-to-NIC instead of process to
process

10

Architecting to Minimize Reliability State

Reliability state can be trivially small for
ordered networks
* Per peer sequence number
* Tracking of all outstanding packets
* Examples:
» Cray Seastar: Portals 3.3 and reliability in 384K of memory
* OPA2-classic: 16 bytes of state per peer NIC

NIC-to-NIC reliability reduces state versus
process to process connections
* Assume 10K NICs with 100 processes per NIC
* NIC-to-NIC: each NIC has 10K connections
* Process-to-Process: each NIC has 100 x 100 x 10,000
connections
Slingshot introduced the era of dynamic
connections
* Removes scaling ceiling for large NIC counts
* Eliminates need to wire up all of the NICs

© OpenFabrics Alliance



INTRODUCTION TO SLINGSHOT:
ETHERNET FOR EXASCALE

© OpenFabrics Alliance



ETHERNET ALWAYS WINS

A Statement of Economic Realities

* 1995: Beowulf Clusters Emerge = Modern high bandwidth links use:

* An Ethernet SerDes
10baseT and 10base2 * Connectors made for Ethernet

= 2004: the management network (e.g., * Cable technology designed around Ethernet

Cray XT3) * Optical modules driven by Ethernet
* And, because of that, Ethernet FEC

= Ethernet has plenty of room to:
* Negotiate features on a port (LLDP)

* No need to re-invent the wheel

= 2005-2021: the marketing era

* Gigabit Ethernet flooded the bottom half of the * Encode additional features alongside Ethernet on the
Top300 list same wire
= June, 2021: Ethernet hits #5 = Some Ethernet limitations are just about

* NERSC Perimutter with Slingshot network design Cho_lc_es _ _
° FEC latency is inherent, but switch latency is a

= June, 2022: Ethernet Reaches Exascale choice

* Ethernet overheads can be negotiated down, and
packet rate is a switch design choice

12 © OpenFabrics Alliance



SLINGSHOT IS ETHERNET FOR HPC

True Ethernet and True HPC on Every Port — All the Time

" Carry standard Ethernet frames * Implement a native transport for libfabric
* Plug into the datacenter Ethernet backbone without * Provide efficient support for MPI, SHMEM, and CCLs
gateways

* Tag matching offload
* Rendezvous offload
* Atomic operation offload

* Leverage Ethernet connected storage
= Run standard IP stacks

* TCP and UDP on standard IP packets on standard

Ethernet frames ° Runs alongside TCP and IP
* Even RoCEV2 = Advanced traffic management for both
= Directly connect third-party Ethernet NICs TCP and HPC flows
* In fact, this was how Perlmutter was originally deployed * No endpoint modification required
= Concurrently carry HPC-enhanced frames * Adaptive routing while preserving ordering
* Optimized headers for tiny payloads * Advanced congestion management to deliver high

* Reduced interframe gap bandwidth and low latency under load

° Link level reliability
* Credit based flow control

13 © OpenFabrics Alliance



FROM SLINGSHOT TO UEC

© OpenFabrics Alliance



THE CONCEPTION OF ULTRA ETHERNET

= Basic conversation structure (February, 2022):
* Al is booming, and it needs a lot of network
Ethernet has performance limiting characteristics and lacks some features traditionally found in HPC systems
InfiniBand is “different”. datacenters don'’t like snowflakes
Slingshot is both Ethernet and Exascale — can we standardize those capabilities?
» Link Level Retry
 Credit base flow control
» Optimized frame formats
Me: maybe we can even do a new semantic layer and network transport?
» <eye roll you could hear over the phone> “you’re welcome to propose that...”

= September, 2022: our first UEC face to face meeting
* The tone had shifted: there was clear interest in developing a modern RDMA definition
* We also standardized enhancements to the link

= We never expected it to be easy, and it never was
° But, worked with some great people along the way

15 © OpenFabrics Alliance



ASSEMBLING THE ULTRA ETHERNET STACK

Successful Standards Build on Proven Technology

= Al and HPC application stacks — unmodified

= Communication middleware — unmodified

= Libfabric — an open-source network APl with unordered C T :
ommunications Middleware

operatlgns | CCLs SHMEM MPI
* Proven in the Cloud and in HPC
Libfabric API

= Proven in HPC at Exascale: :
: : : Vendor Provider
* Semantic layer to support libfabric p
* “Connectionless” reliability architecture Ultra Semantics

Driven by Al in the datacenter: Ethernet fagass Sy
* Congestion management solutions for Best-Effort Ethernet Transport pelivery Congestion
° Scalable shared key security
= Ethernet and IP: no modification required
* But, some optional technology to help
* Optional link level retry
« Optional credit-based flow control Ethernet Link
» Optional packet trimming

Al & HPC Applications
PyTorch Others TensorFlow

\.

Optional LLR
Optional CBFC

16 © OpenFabrics Alliance



ENHANCED EFFICIENCY AND RESILIENCY FOR ETHERNET LINKS

Slingshot implements standard Ethernet and negotiates enhanced features using LLDP

= HPC-E: Co-designed by Cray and Broadcom, first released in
Slingshot-200

* Optimized frames and headers for bandwidth efficiency
* Removed Ethernet’'s 64B minimum frame size and enabled 32B frames
* Removed inter-packet gap
* Reduced preamble
» Optimized “native IP” headers without an L2 header

* Enhanced link layer reliability features
» Low-latency FEC (see 25Gbit Ethernet Consortium)

* Link level retry (LLR) to tolerate transient errors (used in Cray systems for
some time)

» Lane degrade to tolerate hard failures (used in Cray systems for some time)

= UEC 1.0 includes:

° Link level retry
* Credit based flow control (more efficient than PAUSE)

* LLDP negotiation of enhanced features
= Now, UEC is exploring bandwidth efficiency improvements

17

High p
erformance Computing Ethernet
Specification )

HPC-E

16/2008

Config 1

eNtial under gray _
¥~ Broadcon High Performanee Ethemnet peyey
lopment 4,
Ereement

e — |

© OpenFabrics Alliance



A SCALABLE RELIABILITY LAYER

© OpenFabrics Alliance



STARTING FROM THE SLINGSHOT “CONNECTIONLESS” RELIABILITY LAYER

Leveraging the Connectionless Libfabric API Packet Delivery Contexts for Reliability

= What does that mean? = Established between a pair of NICs on
demand when a NIC has data to send

* No persistent, process to process connection o :
P P P * Pipelined establishment means they stand up

* No user visible connection establishment or “instantly”
connection state * Can be shared by multiple processes
= What it does not mean: * More than one allowed

= Removed when the pair of NICs is no
longer communicating

* One round-trip time to remove them
° It does not mean that we cannot implement ordering, * Normally removed due to:

reliability, etc. « |dle

° It does not mean that there are never any sequence
numbers

« Connection pressure at the sender
» Connection pressure at the target

19 © OpenFabrics Alliance



FOUR MODES OF RELIABILITY

Reliability Modes Brought from Slingshot New Reliability Modes
= Reliable, Ordered Delivery (ROD) = Reliable, Unordered Delivery (RUD)

* Guaranteed delivery of every packet exactly once in * Guaranteed delivery of every packet exactly once
the order it was sent ° Not great for MPI header matching

* Required for Ultra Ethernet congestion management

. . * Many programming models work fine with no ordering (more
" Reliable, Unordered Delivery for on thﬁsp,atger) | 9!

Idempotent operations (RUDI)

* Great for MPI header matching

* Guaranteed delivery of every packet at least once = Unreliable, Unordered Deliver (UUD)
* Great for scalability — no Packet Delivery Context ° Enable user who need a UDP-like service to program the
state required entire application in libfabric

* Limited semantics: no matching or target side
completions

20 © OpenFabrics Alliance



RELIABILITY USING PACKET DELIVERY CONTEXTS (PDC)

How Connectionless Reliability Works

= Connection starts when there is data ready to send
* Packets are marked with a SYN bit until the first response is received

* Response contains a target connection ID to use in subsequent packets

,SrcC\D/
* This is a “0 RTT Startup” ack sta\’tseqﬁ’Targzt\(;\DSrcC\D/
. < Targettit
= All acknowledgements must be received before a P 2::; TargetCID, ST
Ack

connection can be closed

——SS#+3
] ) SFCCID, TargeCtID Cle
* This means that a Close can clear all state at the target » Clearssiy_g|

: , . ap
° Close operations are acknowledged and will be retried if the argetCIP: >

acknowledgement is lost
= Targets can request an initiator close a connection 105 SIeCID, Targey,
D, Clearssgsz—y |

* For example, if the target connections are overloaded tCD— |

21 © OpenFabrics Alliance



A LOOK AT THE RELIABILITY HEADER

= What is Clear?

* A cumulative acknowledgement of acknowledgements

« Some acknowledgements carry the result of the operation (Example: fetching [N StartSeqy oy
atomic operations)

* Must let the peer know those have been received
* Significant bandwidth efficiency improvement for reliable responses

SrcC\D
_\— rge‘\'_C\D:
= What are those PDC IDs? | ACK, startseat Zet \D, SrcCiP
- ) ) q,Tar '
* ldentifiers of the source and destination PDC state P ss#+2 Targetcm,sfcc‘“
. . ) : SSH+2,
* Destination PDC ID is not known until after a round-trip Ack,
« DPDCID added to Ultra Ethernet to improve the scalability of implementations | SS#3, Srecp, TargeCtip, |
. . : » Clearssy
* Reuse that field to indicate the offset of packet from the starting PSN e
n H SrCC\D
" Flags: Retransmit, Ack Request, and SYN ok g3, TargetD”
«
Header Start O PDS Request Header (ROD, RUD) 31 Close SrcCIp
Byte | byte 0 | byte 1 | byte 2 | byte 3 ’ TargetCI D, CIearSS#+3$
| 0 | type | next_hdr | flags | clear_psn_offset Close Ac\(’src \D TargetC\D
psn
| 8 | spdcid | dpdcid or {pdc_info, psn_offset}

22 © OpenFabrics Alliance



A BRIEF DETOUR: CONGESTION MANAGEMENT

Slingshot Congestion Management Ultra Ethernet Congestion Management

" Flow-based congestion management in the = Designed for lossy network environments
switches using:
¢ Distinguishes congesting flows from victims * ECN Marking
* Distinguishes endpoint and mid-fabric congestion * Round-trip time

* Packet Trimming
= Avoids mid-fabric congestion with adaptive
packet spraying

* Packets are unordered and randomly distributed using

* Applies back-pressure to congesting flows
Acks use dedicated hardware resources

* Sub-microsecond reaction to changing load

= Congesting flows are held at ingress entropy in packet

* They do not consume network buffer space * “Bad paths” (e.g., ECN marked) are not reused “soon”
» Interoperates with adaptive routing * When many paths are bad, taper the injection rate
» Integrates with third party NICs and * This is the motivation for RUD

switches * Depends on “most” traffic being unordered

* Fine-grain Flow Control (FGFC) returns identifiers and
credit for congesting flows

23 © OpenFabrics Alliance



A TRANSPORT TO SUPPORT LIBFABRIC

© OpenFabrics Alliance



CROSSING THE RUBICON: A CONNECTIONLESS ARCHITECTURE

Focusing on a Scalability First approach to network transports

Must not use a connection to: = Addresses are hierarchical:

- Find a buffer * Afabric address (IP address) 0

_ * A Job Identifier (JobID) PR
* Authorize access to that buffer * A process identifier (PIDonFEP) relative to that JobID
* Describe the failure model * Aresource identifier within that process (Resource

Index) to select the endpoint

* Recover from buffer exhaustion (e.g., receiver not ready) - Amemory key (RMA) or match bits (tagged messaging)

= Must enable scalable addressing within that resource
* Eliminate startup costs associated with collecting and * Authorization is based on the sender’s
redistributing endpoint addresses identity
* Job ID

* Minimize required per-peer address storage

- .t * Encrypted and authenticated
" Must enable interoperability between - Advai\ced transport features have wire
providers P

level header definitions
* Tag matching

* Rendezvous

* Deferrable Send

* Atomic operations

* Define all the bits on the wire for all of the transaction
types

= Must enable multiple user level libraries
concurrently

* CCL, SHMEM, MPI - all linked in the same application

25 © OpenFabrics Alliance



A SCALABLE ADDRESSING SOLUTION

Enabling the communication paradigms that parallel applications actually use

Recei .
= What does a user expect? Dggg:\{:tror Per-Job PIDonFEP Table
Launch a parallel application: many processes on many nodes herytieh
° Lau ication:
P pp yp y (Send/Recv) }onFEP m
* Initialize a communications library (CCL, MPI, SHMEM) E
DAOS > set of buffers
° Send a message to a peer — any peer — in the applicaton | w1 L AN \
e e PPieETo Label’ RNt 1]
* An application may use more than one communication library Network IP Address AW ‘minin
= An example Libfabric over UET flow: (FabricAddress) |}, Job ID sevice T 7T Descriptors
SHMEM
* Launch a 256 rank application that is given JobID 42 on 16 nodes:
» 16 fabric addresses: 10.0.0.16 to 10.0.0.31
* 16 processes per node: PIDonFEP=0 to PIDonFEP=15in Descriptors for
JoblD42 gecei‘,’er Per-Job PIDonFEP Table Index =0
» Map ranks to addresses: R::gﬂﬁg;
* Rank 0: 10.0.0.16, PIDonFEP=0 (RMA) PIDonFEP Resource
. _ —> Index=0
* Rank 47: 10.0.0.18, PIDonFEP=15
* Rank 48: 10.0.0.19, PIDonFEP=0
* Initialize your favorite CCL, MPI, and SHMEM Resource
« Distribute rank mapping with job launch Network IP Address / Index=4
. ! . . . ) (Fabric Address)
» Open a libfabric endpoint for each using a service string (returns ——> FEP Job ID
well-known resource index set — e.g., Resource Index=MPI) Service
Pn%sglgﬁnrs for

26 © OpenFabrics Alliance



SEMANTIC LAYER FEATURES

Designed for an Out-of-Order Network

| byte 0 ‘ byte 1 | byte 2 byte 3
" Includes common HPC functionality | Pime
rsvd opcode ver |[dc|ie [rel|hd[eom|so m message_id
* Send/recv (including tagged send/recv) fi_generation JobiD
. rsvd ‘ PIDonFEP | rsvd resource_index
* RMA (read/write) S
i
* Atomic operations (including fetching atomics) % bffttf”
: ®) ;
° Rendezvous operations n memory_key/ match bits
memory_key / match_bits
header_data
| byte 0 | byte 1 | byte 2 byte 3 header_data
request_length
rsvd opcode ver |dc| ie |re|| hd ‘eom|som| message_id
ri_generation JobID -
rsvd_‘g ‘ PIDonFEP | rsvd resource_index " Enables OUt-Of-order proceSSIng

@ S * Every packet includes full addressing information
E uirer_oftrse . . . . . .
8 initiater * Packet includes which packet within a message it is
memory_key / match_bits
memory_key / match_bits ° Enables processing packets in any order with direct
rsvd payload_length placement at the right location in user memory

message_offset

request_length

27 © OpenFabrics Alliance



Optimizations and Extensions in the HPC Profile

BEYOND THE BASIC HEADER

byte 0 byte 1 byte 2 byte 3
" Includes two header size optimizations i e e ERRE R e request_length
. ri_generation JobID
* Smallest: designed for smallest RMA transfers — —— — —
* Limited to one packet buffer_offset
* Limited addressing AT
° RMA Only byte 0 byte 1 byte 2 byte 3
* Medium: used for single packet Matching or RMA . — P Y Y O O O ——
* Limited to one packet fi_generation JobiD

rsvd PIDonFEP rsvd resource_index

* Complete addressing semantics
» Supports tag matching

header_data / buffer_offset

header_data / buffer_offset

= Support for atomic operations nitiator

match_bits / memory_key

match_bits / memory_key

* Uses an extension header (bottom)

* Can be supported with any other header type byte 0 byte 1 byte 2 byte 3

atomic_opcode atomic_datatype semantic_control rsvd

28 © OpenFabrics Alliance



MPI, CCL, AND UNORDERED NETWORKS

© OpenFabrics Alliance



HARNESSING AN UNORDERED NETWORK

How does that... work?

= The protocol accepts out-of-order packets PO P1 P2 PO P1 P2 PO P1 P2 PO P1 P2 PO P1 P2 [POIPEIP2)
— and delivers them straight to user

memory

* Separated semantics from reliability
» Every message succeeds or fails on its own
* Failures do not propagate from one message to the
next

* Works for RMA and messaging
= fi_write(): the libfabric RMA Write

* Every packet has a destination address

» fi_tsend(): tagged messaging g-gpogngngngplg | ”PObPlgPOﬂPZ”Pll’PZ”PO”Pl”Pl”PO

* A semantic solution from HPC with a simplified
implementation for Al

* Messaging library (NCCL/RCCL) can put a message

number in the tag PO P1 P2 PO P1 P2 PO P1 P2
* Every packet has message number and location in
message PO P1 P2 PO P1 P2 PO P1 P2

30 © OpenFabrics Alliance



WHAT ABOUT MPI?

MPI matching semantics are substantially harder

= MPI messages must be matched

ccr [1] Initiator Target

in order

SES PDS PDS SES
° Genera”y hard tO avoid Messages Msgs + Packets Packets Msgs + Packets Messages
“ ” SEND Send MID = I, OFF =0 > - =RENDEZVOUS s
* Message “envelope” needs an ordered REQUEST end MID = 1, Off = \W D O
en , Offset 0
protocol (e.g., ROD) S Fresesseeeeesssssests NI
Eager size UET_RESPONSE;IV_",D_}.' ---------------- P
P TG N+MTU Read MID 7,

* But, that is not great for load balancing - Off=N+MTU

_ - —> ET_RENDEzy
and congestion control send MID =1, Off =N "= Frrrss OUS_SEND, MID 1, mo
~—>"ONSE_W_DATA MIDS »| Send MID 1, Offset N

" Introducing a standard wire

VvV VY

) e szROU RELPONSE, , | Payload, Off=N+MTU
< o T_ - — < —
protocol for rendezvous ‘SEND  Ut1READ MID 7, Off=NM Read MID 7, Off = N+M
. COMPLETION ~ET_REsP ONSE_W_DATA, mip 7
* Rendezvous sequences are typical for W-» N
inal Rell@ablLy = 5ANSE L occeeee=====""""" load, Off=N
MPI, but non-standard 57, DEFAULT_BESPONSE...--- e T s
4—
* Requests can use ordering COMPLETION

* Most payload can use unordered PDCs

31 © OpenFabrics Alliance



ENABLING RENDEZVOUS OFFLOAD

Standardizing the wire protocol for a Rendezvous Request

» Requests extended with a e bree 1 Pyte2 byte 3
rendezvous requeSt header rsvd opcode ver [dc|ie |rel[hd|eom|som message_id
* Includes all information needed to issue ri_generation JobID
a read rsvd PIDonFEP rsvd resource_index
* Read offset points to the start of the buffer_offset
message at the initiator buffer_offset Standard
u . initiator
= After matching, target issues ——— Request
cc ’ . . memory_| ey/matc | its Header
read tO pU" the remalnlng memory_key / match_bits
data header_data
* Length: may be as long as U
request_length
request_length
eager_length
* Offset: may start at read_offset or at any pepy— — PIDO:FEP‘ g ———
location up to read_offset + eager_length = —— = = Rendezvous
* Should use RUD to issue read —— Request
- Header

read_memory_key

read_memory_key

32 © OpenFabrics Alliance



SUMMARY

= Slingshot proved that Ethernet can meet the most challenging workloads in Al & HPC
° Proven at scale on all three of the US Exascale systems, HPE Cray supercomputers and now scale-out Al systems

* The Ultra Ethernet 1.0 standard builds on that foundation to create a modern RDMA
interface over Ethernet
* Extended with recent advances in congestion management from Cloud datacenter experts

= Ultra Ethernet is the first standard transport designed to support libfabric
* Enabling native multi-vendor interoperability with libfabric for the first time
* Breaks away from legacy APIs that inhibit scalability and innovation

= And more: the next iteration of the UEC specification is under development
* HPC oriented link optimizations like LLR and CBFC create the right framework to support scale-up networking
* Packet efficiency improvements are being considered to reduce overhead for small transfers

33 © OpenFabrics Alliance



2025 OFA Webinar Series

THANK YOU

Keith D. Underwood

HP™



	From Slingshot to Ultra Ethernet:  �Building a Transport Standard for Libfabric
	Meet the Presenter: Keith D. Underwood, HPE
	Introduction to the �Ultra Ethernet Consortium (UEC)
	A Growing Consortium
	Building a Standard for a Full Network Stack
	A Little History
	Ultra Ethernet: An Origin Story
	Connections and Networks: What Went Wrong?
	Semantics Vs Reliability: A Necessary Separation
	Delivering Reliability at Massive Scale
	Introduction to Slingshot:�Ethernet for Exascale
	Ethernet Always Wins
	Slingshot is Ethernet for HPC
	From Slingshot to UEC
	The Conception of Ultra Ethernet
	Assembling the Ultra Ethernet Stack
	Enhanced Efficiency and Resiliency for Ethernet Links
	A Scalable Reliability Layer
	Starting from the Slingshot “Connectionless” Reliability Layer
	Four Modes of Reliability
	Reliability using Packet Delivery Contexts (PDC)
	A Look at the Reliability Header
	A Brief Detour: Congestion Management
	A Transport to Support Libfabric
	Crossing the Rubicon: A Connectionless Architecture
	A Scalable Addressing Solution
	Semantic Layer Features
	Beyond the Basic Header
	MPI, CCL, and Unordered Networks
	Harnessing an Unordered Network
	What About MPI?
	Enabling Rendezvous Offload
	Summary
	THANK YOU
	Backup



