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Keith Underwood is a Senior Distinguished Technologist in the HPE High 
Performance Networking Business Unit where he leads next generation NIC 
architecture definition. He is the editor of the UEC Transport Semantic 
specification and an active contributor to the UEC Transport definition. Prior to 
joining Cray, Keith was a founding member of the Omni-Path team at Intel and 
led the Omni-Path 2 NIC architecture. He was part of the team that created the 
Portals 4 API that seeded the Libfabric definition, and was a key contributor to 
developing the MPI-3 RMA extensions.



INTRODUCTION TO THE 
ULTRA ETHERNET CONSORTIUM (UEC)
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A GROWING CONSORTIUM
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>100 member companies
>1300 active participants

Mission:
Advance an Ethernet-Based Open, Interoperable, High-Performance

Full-Stack architecture to meet the Growing Demands of AI and HPC at Scale
Source:ultraethernet.org

snapshot as of 2024-10
*not all members listed

http://ultraethernet.org/


BUILDING A STANDARD FOR A FULL NETWORK STACK

 The first new network standard in 25 
years
• Released 1.0 June,2025

 Many active working groups covering 
the entire stack
• Many layers

• One specification

 The spec is big

Enabling AI and HPC at the Largest Scale
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tiny compared to existing standards
^

UEC is a JDF project and an
International Standards Organization



A LITTLE HISTORY
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ULTRA ETHERNET: AN ORIGIN STORY

 In the early 1990s…
• Nobody gave webinars….
• Ethernet looked like this…
• And supercomputers didn’t use Ethernet

 A supercomputer was shipped that used 
connections
• And didn’t have enough memory to launch an application
• People learned that connections were bad

• Although not everyone got the memo
• A new operation system was born (SUNMOS)

• With a networking stack that did not use connections
• They retro-named that networking stack Portals 0.0
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CONNECTIONS AND NETWORKS: WHAT WENT WRONG?

 If you give an architect a connection…
• They will want to make that connection ordered (especially if it is 1999)
• Just to keep the hardware simple
 When they have an ordered connection, they will want to 

optimize around it….
• They will only put the addressing information on the first packet of the message
• They will use the ordered connection to manage resource exhaustion
• They will embed the ordered connection in the error model
 Once they have used the connection for optimization, they 

will want to tangle it up with the semantics…
• They will use the connection to pick the destination buffer
• And, the security of that buffer will depend on the connection
 When they tangle the connection up with the semantics…

• They will want the user to set it up
 When user software programs around the connection…

• It is hard to find your way back out

When you have a hammer, everything looks like a nail
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Reliability and Ordering Semantics
 Did the packet get there?

• Loss detection
• Retransmits
• When do I need to give up on a packet getting there?
 Did it need to be in order?

• If so, was it?
 Was it a duplicate? 
 Typical tools:

• Sequence numbers
• Probe packets
• Timeouts 
• Retransmit limits

 What do I do with that packet?
• Is it a part of a larger message?
• How big is the message?
• Where does it go in the message?

 Where is that message going at the target 
node?
• Which job and which process in that job?
• Which queue in that process? 

 What is that message supposed to do?
• Is it a write or a read?
• A send? or a tagged send that needs matching?
• Or, is it an atomic?  If so, what is the operation and 

datatype?
 What is the behavior of failure?

• What do I do if the target process wasn’t there?
• How do I handle resource exhaustion?
• What happens if there was an address translation failure?

SEMANTICS VS RELIABILITY: A NECESSARY SEPARATION
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Semantic Sublayer sees a Reliable Network Architecting to Minimize Reliability State
 Semantic layer makes packets, and the 

reliability layer makes sure they get there
• Many approaches available, and the choice is 

transparent to the upper layers
 Not that long ago: “just build a reliable 

network” was viable
• Lasted from ASCI Red to Cray Aries
• Careful design and link level retry meant that all the 

packets got through
• 50 Gbps signaling (and beyond) is a more difficult 

regime
 Isolating reliability at the network layer 

enables less state
• Reliability can be NIC-to-NIC instead of process to 

process

 Reliability state can be trivially small for 
ordered networks
• Per peer sequence number 
• Tracking of all outstanding packets
• Examples:

• Cray Seastar: Portals 3.3 and reliability in 384K of memory 
• OPA2-classic: 16 bytes of state per peer NIC

 NIC-to-NIC reliability reduces state versus 
process to process connections
• Assume 10K NICs with 100 processes per NIC

• NIC-to-NIC: each NIC has 10K connections
• Process-to-Process: each NIC has 100 x 100 x 10,000 

connections
 Slingshot introduced the era of dynamic 

connections
• Removes scaling ceiling for large NIC counts
• Eliminates need to wire up all of the NICs

DELIVERING RELIABILITY AT MASSIVE SCALE
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INTRODUCTION TO SLINGSHOT:
ETHERNET FOR EXASCALE
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ETHERNET ALWAYS WINS

 1995: Beowulf Clusters Emerge
• 10baseT and 10base2

 2004: the management network (e.g., 
Cray XT3)
• No need to re-invent the wheel

 2005-2021: the marketing era
• Gigabit Ethernet flooded the bottom half of the 

Top500 list

 June, 2021: Ethernet hits #5
• NERSC Perlmutter with Slingshot network

 June, 2022: Ethernet Reaches Exascale

 Modern high bandwidth links use:
• An Ethernet SerDes
• Connectors made for Ethernet
• Cable technology designed around Ethernet
• Optical modules driven by Ethernet
• And, because of that, Ethernet FEC
 Ethernet has plenty of room to:

• Negotiate features on a port (LLDP)
• Encode additional features alongside Ethernet on the 

same wire
 Some Ethernet limitations are just about 

design choices
• FEC latency is inherent, but switch latency is a 

choice
• Ethernet overheads can be negotiated down, and 

packet rate is a switch design choice

A Statement of Economic Realities
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SLINGSHOT IS ETHERNET FOR HPC

 Carry standard Ethernet frames
• Plug into the datacenter Ethernet backbone without 

gateways
• Leverage Ethernet connected storage
 Run standard IP stacks

• TCP and UDP on standard IP packets on standard 
Ethernet frames

• Even RoCEv2
 Directly connect third-party Ethernet NICs

• In fact, this was how Perlmutter was originally deployed
 Concurrently carry HPC-enhanced frames

• Optimized headers for tiny payloads
• Reduced interframe gap
• Link level reliability
• Credit based flow control 

 Implement a native transport for libfabric
• Provide efficient support for MPI, SHMEM, and CCLs
• Tag matching offload
• Rendezvous offload
• Atomic operation offload
• Runs alongside TCP and IP

 Advanced traffic management for both 
TCP and HPC flows
• No endpoint modification required
• Adaptive routing while preserving ordering
• Advanced congestion management to deliver high 

bandwidth and low latency under load

True Ethernet and True HPC on Every Port – All the Time
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FROM SLINGSHOT TO UEC
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THE CONCEPTION OF ULTRA ETHERNET

 Basic conversation structure (February, 2022): 
• AI is booming, and it needs a lot of network
• Ethernet has performance limiting characteristics and lacks some features traditionally found in HPC systems
• InfiniBand is “different”:  datacenters don’t like snowflakes
• Slingshot is both Ethernet and Exascale – can we standardize those capabilities?

• Link Level Retry
• Credit base flow control
• Optimized frame formats

• Me: maybe we can even do a new semantic layer and network transport?
• <eye roll you could hear over the phone> “you’re welcome to propose that…”

 September, 2022: our first UEC face to face meeting
• The tone had shifted: there was clear interest in developing a modern RDMA definition
• We also standardized enhancements to the link

 We never expected it to be easy, and it never was
• But, worked with some great people along the way
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ASSEMBLING THE ULTRA ETHERNET STACK

 AI and HPC application stacks – unmodified
 Communication middleware – unmodified
 Libfabric – an open-source network API with unordered 

operations
• Proven in the Cloud and in HPC
 Proven in HPC at Exascale: 

• Semantic layer to support libfabric
• “Connectionless” reliability architecture
 Driven by AI in the datacenter:

• Congestion management solutions for Best-Effort Ethernet
• Scalable shared key security
 Ethernet and IP: no modification required

• But, some optional technology to help
• Optional link level retry
• Optional credit-based flow control
• Optional packet trimming

Successful Standards Build on Proven Technology
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ENHANCED EFFICIENCY AND RESILIENCY FOR ETHERNET LINKS

 HPC-E: Co-designed by Cray and Broadcom, first released in 
Slingshot-200
• Optimized frames and headers for bandwidth efficiency

• Removed Ethernet’s 64B minimum frame size and enabled 32B frames
• Removed inter-packet gap
• Reduced preamble
• Optimized “native IP” headers without an L2 header

• Enhanced link layer reliability features
• Low-latency FEC (see 25Gbit Ethernet Consortium)
• Link level retry (LLR) to tolerate transient errors (used in Cray systems for 

some time)
• Lane degrade to tolerate hard failures (used in Cray systems for some time)

 UEC 1.0 includes:
• Link level retry 
• Credit based flow control (more efficient than PAUSE)
• LLDP negotiation of enhanced features
 Now, UEC is exploring bandwidth efficiency improvements

Slingshot implements standard Ethernet and negotiates enhanced features using LLDP
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A SCALABLE RELIABILITY LAYER
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Leveraging the Connectionless Libfabric API Packet Delivery Contexts for Reliability

 What does that mean?
• No persistent, process to process connection

• No user visible connection establishment or 
connection state

 What it does not mean:
• It does not mean that there are never any sequence 

numbers

• It does not mean that we cannot implement ordering, 
reliability, etc.

 Established between a pair of NICs on 
demand when a NIC has data to send
• Pipelined establishment means they stand up 

“instantly”
• Can be shared by multiple processes
• More than one allowed
 Removed when the pair of NICs is no 

longer communicating
• One round-trip time to remove them
• Normally removed due to:

• Idle
• Connection pressure at the sender
• Connection pressure at the target

STARTING FROM THE SLINGSHOT “CONNECTIONLESS” RELIABILITY LAYER
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Reliability Modes Brought from Slingshot New Reliability Modes

 Reliable, Ordered Delivery (ROD)
• Guaranteed delivery of every packet exactly once in 

the order it was sent

• Great for MPI header matching

 Reliable, Unordered Delivery for 
Idempotent operations (RUDI)
• Guaranteed delivery of every packet at least once

• Great for scalability – no Packet Delivery Context 
state required

• Limited semantics: no matching or target side 
completions

 Reliable, Unordered Delivery (RUD)
• Guaranteed delivery of every packet exactly once
• Not great for MPI header matching
• Required for Ultra Ethernet congestion management
• Many programming models work fine with no ordering (more 

on this later)

 Unreliable, Unordered Deliver (UUD)
• Enable user who need a UDP-like service to program the 

entire application in libfabric

FOUR MODES OF RELIABILITY
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RELIABILITY USING PACKET DELIVERY CONTEXTS (PDC)

 Connection starts when there is data ready to send
• Packets are marked with a SYN bit until the first response is received

• Response contains a target connection ID to use in subsequent packets

• This is a “0 RTT Startup”

 All acknowledgements must be received before a 
connection can be closed
• This means that a Close can clear all state at the target

• Close operations are acknowledged and will be retried if the 
acknowledgement is lost

 Targets can request an initiator close a connection
• For example, if the target connections are overloaded

How Connectionless Reliability Works
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A LOOK AT THE RELIABILITY HEADER

 What is Clear?
• A cumulative acknowledgement of acknowledgements

• Some acknowledgements carry the result of the operation (Example:  fetching 
atomic operations)

• Must let the peer know those have been received
• Significant bandwidth efficiency improvement for reliable responses
 What are those PDC IDs?

• Identifiers of the source and destination PDC state
• Destination PDC ID is not known until after a round-trip

• DPDCID added to Ultra Ethernet to improve the scalability of implementations
• Reuse that field to indicate the offset of packet from the starting PSN

 Flags:  Retransmit, Ack Request, and SYN
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Slingshot Congestion Management Ultra Ethernet Congestion Management
 Flow-based congestion management in the 

switches
• Distinguishes congesting flows from victims
• Distinguishes endpoint and mid-fabric congestion
• Applies back-pressure to congesting flows
 Acks use dedicated hardware resources

• Sub-microsecond reaction to changing load
 Congesting flows are held at ingress

• They do not consume network buffer space
 Interoperates with adaptive routing
 Integrates with third party NICs and 

switches
• Fine-grain Flow Control (FGFC) returns identifiers and 

credit for congesting flows

 Designed for lossy network environments 
using:
• ECN Marking
• Round-trip time
• Packet Trimming
 Avoids mid-fabric congestion with adaptive 

packet spraying
• Packets are unordered and randomly distributed using 

entropy in packet
• “Bad paths” (e.g., ECN marked) are not reused “soon”
• When many paths are bad, taper the injection rate
 This is the motivation for RUD

• Depends on “most” traffic being unordered

A BRIEF DETOUR: CONGESTION MANAGEMENT
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A TRANSPORT TO SUPPORT LIBFABRIC
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CROSSING THE RUBICON: A CONNECTIONLESS ARCHITECTURE

 Must not use a connection to:
• Find a buffer
• Authorize access to that buffer
• Describe the failure model
• Recover from buffer exhaustion (e.g., receiver not ready)
 Must enable scalable addressing

• Eliminate startup costs associated with collecting and 
redistributing endpoint addresses

• Minimize required per-peer address storage
 Must enable interoperability between 

providers
• Define all the bits on the wire for all of the transaction 

types
 Must enable multiple user level libraries 

concurrently
• CCL, SHMEM, MPI – all linked in the same application

 Addresses are hierarchical:
• A fabric address (IP address)
• A Job Identifier (JobID)
• A process identifier (PIDonFEP) relative to that JobID
• A resource identifier within that process (Resource 

Index) to select the endpoint
• A memory key (RMA) or match bits (tagged messaging) 

within that resource
 Authorization is based on the sender’s 

identity
• Job ID
• Encrypted and authenticated
 Advanced transport features have wire 

level header definitions
• Tag matching
• Rendezvous 
• Deferrable Send
• Atomic operations

Focusing on a Scalability First approach to network transports
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A SCALABLE ADDRESSING SOLUTION

 What does a user expect?
• Launch a parallel application: many processes on many nodes

• Initialize a communications library (CCL, MPI, SHMEM)

• Send a message to a peer – any peer – in the application

• An application may use more than one communication library
 An example Libfabric over UET flow:

• Launch a 256 rank application that is given JobID 42 on 16 nodes:
• 16 fabric addresses:  10.0.0.16 to 10.0.0.31
• 16 processes per node: PIDonFEP=0 to PIDonFEP=15 in 

JobID42 
• Map ranks to addresses:

• Rank 0: 10.0.0.16, PIDonFEP=0
• Rank 47: 10.0.0.18, PIDonFEP=15
• Rank 48: 10.0.0.19, PIDonFEP=0

• Initialize your favorite CCL, MPI, and SHMEM
• Distribute rank mapping with job launch
• Open a libfabric endpoint for each using a service string (returns 

well-known resource index set – e.g., Resource Index=MPI)

Enabling the communication paradigms that parallel applications actually use
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SEMANTIC LAYER FEATURES

 Includes common HPC functionality
• Send/recv (including tagged send/recv)

• RMA (read/write)

• Atomic operations (including fetching atomics)

• Rendezvous operations

Designed for an Out-of-Order Network
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dc ie rel hd eom som

byte 0 byte 1 byte 2 byte 3

rsvd PIDonFEP rsvd resource_index

buffer_offset

buffer_offset

rsvd opcode ver

ri_generation JobID

message_id

initiator

memory_key / match_bits

memory_key / match_bits

header_data

header_data

request_length
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buffer_offset
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memory_key / match_bits

memory_key / match_bits

rsvd payload_length

message_offset

 Enables out-of-order processing
• Every packet includes full addressing information

• Packet includes which packet within a message it is

• Enables processing packets in any order with direct 
placement at the right location in user memory
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BEYOND THE BASIC HEADER

 Includes two header size optimizations
• Smallest:  designed for smallest RMA transfers

• Limited to one packet
• Limited addressing
• RMA only

• Medium: used for single packet Matching or RMA
• Limited to one packet
• Complete addressing semantics
• Supports tag matching

 Support for atomic operations
• Uses an extension header (bottom) 

• Can be supported with any other header type

Optimizations and Extensions in the HPC Profile
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dc ie rel rsvd eom som

buffer_offset

buffer_offset

rsvd opcode ver rsvd request_length
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byte 0 byte 1 byte 2 byte 3

rsvd PIDonFEP rsvd resource_index
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rsvd request_length
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match_bits / memory_key

match_bits / memory_key

byte 0 byte 1 byte 2 byte 3

atomic_opcode atomic_datatype semantic_control rsvd



MPI, CCL, AND UNORDERED NETWORKS
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HARNESSING AN UNORDERED NETWORK

 The protocol accepts out-of-order packets 
– and delivers them straight to user 
memory
• Separated semantics from reliability

• Every message succeeds or fails on its own
• Failures do not propagate from one message to the 

next
• Works for RMA and messaging
 fi_write(): the libfabric RMA Write

• Every packet has a destination address
 fi_tsend(): tagged messaging

• A semantic solution from HPC with a simplified 
implementation for AI

• Messaging library (NCCL/RCCL) can put a message 
number in the tag

• Every packet has message number and location in 
message 

How does that… work?
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WHAT ABOUT MPI?

 MPI messages must be matched 
“in order”
• Generally hard to avoid

• Message “envelope” needs an ordered 
protocol (e.g., ROD)

• But, that is not great for load balancing 
and congestion control

 Introducing a standard wire 
protocol for rendezvous
• Rendezvous sequences are typical for 

MPI, but non-standard

• Requests can use ordering

• Most payload can use unordered PDCs

MPI matching semantics are substantially harder
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ENABLING RENDEZVOUS OFFLOAD

 Requests extended with a 
rendezvous request header
• Includes all information needed to issue 

a read
• Read offset points to the start of the 

message at the initiator

 After matching, target issues 
read to “pull” the remaining 
data
• Length: may be as long as 

request_length
• Offset: may start at read_offset or at any 

location up to read_offset + eager_length
• Should use RUD to issue read

Standardizing the wire protocol for a Rendezvous Request
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Standard 
Request 
Header

Rendezvous 
Request 
Header

byte 0 byte 1 byte 2 byte 3

read_memory_key

read_memory_key

eager_length

read_ri_generation read_PIDonFEP read_resource_index

read_offset

read_offset

dc ie rel hd eom som

byte 0 byte 1 byte 2 byte 3

rsvd PIDonFEP rsvd resource_index

buffer_offset

buffer_offset

rsvd opcode ver

ri_generation JobID

message_id

initiator

memory_key / match_bits

memory_key / match_bits

header_data

header_data

request_length



SUMMARY

 Slingshot proved that Ethernet can meet the most challenging workloads in AI & HPC
• Proven at scale on all three of the US Exascale systems, HPE Cray supercomputers and now scale-out AI systems

 The Ultra Ethernet 1.0 standard builds on that foundation to create a modern RDMA 
interface over Ethernet
• Extended with recent advances in congestion management from Cloud datacenter experts

 Ultra Ethernet is the first standard transport designed to support libfabric
• Enabling native multi-vendor interoperability with libfabric for the first time
• Breaks away from legacy APIs that inhibit scalability and innovation

 And more:  the next iteration of the UEC specification is under development
• HPC oriented link optimizations like LLR and CBFC create the right framework to support scale-up networking
• Packet efficiency improvements are being considered to reduce overhead for small transfers 
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THANK YOU
Keith D. Underwood
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